Patents by Inventor Byeong Geun SON

Byeong Geun SON has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9865558
    Abstract: A semiconductor device connected by an anisotropic conductive film, the anisotropic conductive film having a differential scanning calorimeter onset temperature of 60° C. to 85° C., and a elastic modulus change of 30% or less, as calculated by Equation 1, below, Elastic modulus change(%)={(M1?M0)/M0}×100??[Equation 1] wherein M0 is an initial elastic modulus in kgf/cm2 of the anisotropic conductive film as measured at 25° C., and M1 is a elastic modulus in kgf/cm2 of the anisotropic conductive film as measured at 25° C. after the film is left at 25° C. for 170 hours.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: January 9, 2018
    Assignee: SAMSUNG SDI CO., LTD.
    Inventors: Young Ju Shin, Kyoung Ku Kang, Ji Yeon Kim, Kyoung Soo Park, Young Woo Park, Byeong Geun Son, Kyoung Hun Shin, Kwang Jin Jung, Jae Sun Han, Ja Young Hwang
  • Patent number: 9657196
    Abstract: A semiconductor device connected by an anisotropic conductive film. The anisotropic conductive film includes a composition for an anisotropic conductive film including a first epoxy resin having an exothermic peak temperature of about 80° C. to about 110° C. and a second epoxy resin having an exothermic peak temperature of 120° C. to 200° C., as measured by differential scanning calorimetry (DSC). The first epoxy resin and the second epoxy resin are present in combined amount of about 30 wt % to about 50 wt % based on a total weight of the composition in terms of solid content. The second epoxy resin is present in an amount of about 60 to about 90 parts by weight based on 100 parts by weight of the first and second epoxy resins.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: May 23, 2017
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Ji Yeon Kim, Kyoung Ku Kang, Kyoung Soo Park, Young Woo Park, Byeong Geun Son, Kyoung Hun Shin, Young Ju Shin, Kwang Jin Jung, Jae Sun Han, Ja Young Hwang
  • Patent number: 9490229
    Abstract: Provided is a semiconductor device, including an anisotropic conductive film connecting the semiconductor device, the anisotropic conductive film having a maximum stress of 0.4 kgf/mm2 or more; and a stress-strain curve having a slope (A) of greater than 0 and less than or equal to 0.2 kgf/(mm2·%) as represented by the following equation 1: slope(A)=(½Smax?S0)/x??(1), wherein: Smax=maximum stress, x=strain (%) at half (½) of the maximum stress, and S0=stress at a strain of 0.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: November 8, 2016
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Ji Yeon Kim, Kyoung Ku Kang, Kyoung Soo Park, Byeong Geun Son, Young Ju Shin, Kwang Jin Jung, Ja Young Hwang
  • Publication number: 20160064349
    Abstract: A semiconductor device connected by an anisotropic conductive film, the anisotropic conductive film having a differential scanning calorimeter onset temperature of 60° C. to 85° C., and a elastic modulus change of 30% or less, as calculated by Equation 1, below, Elastic modulus change(%)={(M1?M0)/M0}×100??[Equation 1] wherein M0 is an initial elastic modulus in kgf/cm2 of the anisotropic conductive film as measured at 25° C., and M1 is a elastic modulus in kgf/cm2 of the anisotropic conductive film as measured at 25° C. after the film is left at 25° C. for 170 hours.
    Type: Application
    Filed: May 14, 2015
    Publication date: March 3, 2016
    Inventors: Young Ju SHIN, Kyoung Ku KANG, Ji Yeon KIM, Kyoung Soo PARK, Young Woo PARK, Byeong Geun SON, Kyoung Hun SHIN, Kwang Jin JUNG, Jae Sun HAN, Ja Young HWANG
  • Publication number: 20150318257
    Abstract: A semiconductor device connected by an anisotropic conductive film. The anisotropic conductive film includes a composition for an anisotropic conductive film including a first epoxy resin having an exothermic peak temperature of about 80° C. to about 110° C. and a second epoxy resin having an exothermic peak temperature of 120° C. to 200° C., as measured by differential scanning calorimetry (DSC). The first epoxy resin and the second epoxy resin are present in combined amount of about 30 wt % to about 50 wt % based on a total weight of the composition in terms of solid content. The second epoxy resin is present in an amount of about 60 to about 90 parts by weight based on 100 parts by weight of the first and second epoxy resins.
    Type: Application
    Filed: January 26, 2015
    Publication date: November 5, 2015
    Inventors: Ji Yeon KIM, Kyoung Ku KANG, Kyoung Soo PARK, Young Woo PARK, Byeong Geun SON, Kyoung Hun SHIN, Young Ju SHIN, Kwang Jin JUNG, Jae Sun HAN, Ja Young HWANG
  • Publication number: 20150123292
    Abstract: Provided is a semiconductor device, including an anisotropic conductive film connecting the semiconductor device, the anisotropic conductive film having a maximum stress of 0.4 kgf/mm2 or more; and a stress-strain curve having a slope (A) of greater than 0 and less than or equal to 0.2 kgf/(mm2·%) as represented by the following equation 1: slope(A)=(½Smax?S0)/x??(1), wherein: Smax=maximum stress, x=strain (%) at half (½) of the maximum stress, and S0=stress at a strain of 0.
    Type: Application
    Filed: October 29, 2014
    Publication date: May 7, 2015
    Inventors: Ji Yeon KIM, Kyoung Ku KANG, Kyoung Soo PARK, Byeong Geun SON, Young Ju SHIN, Kwang Jin JUNG, Ja Young HWANG