Patents by Inventor Cameron McCord

Cameron McCord has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11939527
    Abstract: Provided in one embodiment is a continuous process for converting waste plastic into recycle for polyethylene polymerization. The process comprises selecting waste plastics containing polyethylene and/or polypropylene, and passing the waste plastics through a pyrolysis reactor to thermally crack at least a portion of the polyolefin waste and produce a pyrolyzed effluent. The pyrolyzed effluent is separated into offgas, a pyrolysis oil and optionally pyrolysis wax comprising a naphtha/diesel fraction and heavy fraction, and char. The pyrolysis oil and wax is passed to a refinery FCC feed pretreater unit. A heavy fraction is recovered and sent to a refinery FCC unit, from which a C3 olefin/paraffin mixture fraction is recovered, which is passed to a steam cracker for ethylene production. In another embodiment, a propane fraction (C3) is recovered from a propane/propylene splitter and passed to the steam cracker.
    Type: Grant
    Filed: October 30, 2022
    Date of Patent: March 26, 2024
    Assignee: Chevron U.S.A. Inc.
    Inventors: Hye-Kyung Timken, Cameron McCord
  • Publication number: 20240076555
    Abstract: Provided in one embodiment is a continuous process for converting waste plastic into recycle for polyethylene polymerization. The process comprises selecting waste plastics containing polyethylene and/or polypropylene, and passing the waste plastics through a pyrolysis reactor to thermally crack at least a portion of the polyolefin waste and produce a pyrolyzed effluent. The pyrolyzed effluent is separated into offgas, a pyrolysis oil and optionally pyrolysis wax comprising a naphtha/diesel fraction and heavy fraction, and char. The pyrolysis oil and wax is passed to a refinery FCC feed pretreater unit. A heavy fraction is recovered and sent to a refinery FCC unit, from which a C3 olefin/paraffin mixture fraction is recovered, which is passed to a steam cracker for ethylene production. In another embodiment, a propane fraction (C3) is recovered from a propane/propylene splitter and passed to the steam cracker.
    Type: Application
    Filed: October 30, 2022
    Publication date: March 7, 2024
    Applicant: Chevron U.S.A. Inc.
    Inventors: Hye-Kyung Timken, Cameron McCord
  • Patent number: 11566182
    Abstract: Provided in one embodiment is a continuous process for converting waste plastic into recycle for polyethylene polymerization. The process comprises selecting waste plastics containing polyethylene and/or polypropylene, and passing the waste plastics through a pyrolysis reactor to thermally crack at least a portion of the polyolefin waste and produce a pyrolyzed effluent. The pyrolyzed effluent is separated into offgas, a pyrolysis oil and optionally pyrolysis wax comprising a naphtha/diesel fraction and heavy fraction, and char. The pyrolysis oil and wax is passed to a refinery FCC feed pretreater unit. A heavy fraction is recovered and sent to a refinery FCC unit, from which a C3 olefin/paraffin mixture fraction is recovered, which is passed to a steam cracker for ethylene production. In another embodiment, a propane fraction (C3) is recovered from a propane/propylene splitter and passed to the steam cracker.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: January 31, 2023
    Assignee: Chevron U.S.A. Inc.
    Inventors: Hye-Kyung Timken, Cameron McCord
  • Patent number: 11306253
    Abstract: Provided in one embodiment is a continuous process for converting waste plastic into recycle for polyethylene polymerization. The process comprises selecting waste plastics containing polyethylene and/or polypropylene, and passing the waste plastics through a pyrolysis reactor to thermally crack at least a portion of the polyolefin waste and produce a pyrolyzed effluent. The pyrolyzed effluent is separated into offgas, a pyrolysis oil and optionally wax comprising a naphtha/diesel and heavy fraction, and char. The pyrolysis oil is passed to a refinery FCC unit from which a liquid petroleum gas C3 olefin/paraffin mixture fraction is recovered, as well as a C4 olefin/paraffin mixture fraction. The liquid petroleum gas C3 olefin/paraffin mixture fraction is passed to a steam cracker for ethylene production. The C4 olefin/paraffin mixture fraction is passed to a refinery alkylation unit, from which a n-butane and naphtha feed for a stream cracker to produce ethylene is recovered.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: April 19, 2022
    Assignee: Chevron U.S.A. Inc.
    Inventors: Hye-Kyung Timken, Cameron McCord
  • Publication number: 20210301209
    Abstract: Provided in one embodiment is a continuous process for converting waste plastic into recycle for polyethylene polymerization. The process comprises selecting waste plastics containing polyethylene and/or polypropylene, and passing the waste plastics through a pyrolysis reactor to thermally crack at least a portion of the polyolefin waste and produce a pyrolyzed effluent. The pyrolyzed effluent is separated into offgas, a pyrolysis oil and optionally wax comprising a naphtha/diesel and heavy fraction, and char. The pyrolysis oil is passed to a refinery FCC unit from which a liquid petroleum gas C3 olefin/paraffin mixture fraction is recovered, as well as a C4 olefin/paraffin mixture fraction. The liquid petroleum gas C3 olefin/paraffin mixture fraction is passed to a steam cracker for ethylene production. The C4 olefin/paraffin mixture fraction is passed to a refinery alkylation unit, from which a n-butane and naphtha feed for a stream cracker to produce ethylene is recovered.
    Type: Application
    Filed: December 23, 2020
    Publication date: September 30, 2021
    Applicant: Chevron U.S.A. Inc.
    Inventors: Hye-Kyung Timken, Cameron McCord
  • Publication number: 20210301210
    Abstract: Provided in one embodiment is a continuous process for converting waste plastic into recycle for polyethylene polymerization. The process comprises selecting waste plastics containing polyethylene and/or polypropylene, and passing the waste plastics through a pyrolysis reactor to thermally crack at least a portion of the polyolefin waste and produce a pyrolyzed effluent. The pyrolyzed effluent is separated into offgas, a pyrolysis oil and optionally pyrolysis wax comprising a naphtha/diesel fraction and heavy fraction, and char. The pyrolysis oil and wax is passed to a refinery FCC feed pretreater unit. A heavy fraction is recovered and sent to a refinery FCC unit, from which a C3 olefin/paraffin mixture fraction is recovered, which is passed to a steam cracker for ethylene production. In another embodiment, a propane fraction (C3) is recovered from a propane/propylene splitter and passed to the steam cracker.
    Type: Application
    Filed: December 23, 2020
    Publication date: September 30, 2021
    Applicant: Chevron U.S.A. Inc.
    Inventors: Hye-Kyung Timken, Cameron McCord
  • Patent number: 10947458
    Abstract: A process is provided for upgrading a renewable feedstock. The process includes introducing the renewable feedstock into a fluid catalytic cracking (FCC) reactor unit operating under catalytic cracking conditions and comprising a circulating inventory of an equilibrium catalyst composition; removing a portion of the equilibrium catalyst inventory from the FCC reactor unit while replacing all the equilibrium catalyst removed from the unit with a spent catalyst to obtain a composite circulating catalyst within the FCC reactor unit; and contacting the composite circulating catalyst with the renewable feedstock in the FCC reactor unit under a steady state environment to provide a product stream comprising cracked products.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: March 16, 2021
    Assignee: CHEVRON U.S.A. INC.
    Inventors: Tengfei Liu, Mingting Xu, Kandaswamy Jothimurugesan, Richard Grove, Michael K. Maholland, Michelle Young, Winnie Lieu, Cameron McCord