Patents by Inventor Carl Raymond Taylor

Carl Raymond Taylor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9982515
    Abstract: A locking apparatus for attaching to an end of a valve actuator includes an assembly body, the assembly body releasably securable to a valve actuator. The assembly body has a stem bore for receiving an actuator stem, and a plunger orifice through a sidewall of the assembly body. An immobilizer assembly has a plunger extending through the plunger orifice, and biased radially outward and moveable between a radially inner position where the immobilizer assembly extends over the stem bore, and a radially outer position where an inner end of the immobilizer assembly is radially outward of the stem bore. A segmented housing circumscribes the assembly body and is moveable between a first position where the plunger is in the radially outer position and a second position where the plunger is in the radially inner position. A fusible band selectively retains the segmented housing in engagement with the immobilizer assembly.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: May 29, 2018
    Assignee: GE OIL & GAS PRESSURE CONTROL LP
    Inventors: Carl Raymond Taylor, Keith Adams, Travis Kyle McEvoy
  • Publication number: 20150376986
    Abstract: A locking apparatus for attaching to an end of a valve actuator includes an assembly body, the assembly body releasably securable to a valve actuator. The assembly body has a stem bore for receiving an actuator stem, and a plunger orifice through a sidewall of the assembly body. An immobilizer assembly has a plunger extending through the plunger orifice, and biased radially outward and moveable between a radially inner position where the immobilizer assembly extends over the stem bore, and a radially outer position where an inner end of the immobilizer assembly is radially outward of the stem bore. A segmented housing circumscribes the assembly body and is moveable between a first position where the plunger is in the radially outer position and a second position where the plunger is in the radially inner position. A fusible band selectively retains the segmented housing in engagement with the immobilizer assembly.
    Type: Application
    Filed: June 23, 2015
    Publication date: December 31, 2015
    Applicant: GE OIL & GAS PRESSURE CONTROL LP
    Inventors: Carl Raymond Taylor, Keith Adams, Travis Kyle McEvoy
  • Publication number: 20020076179
    Abstract: A buffer encasement has a longitudinally extending interior surface that extends around and defines a longitudinally extending passage containing a stack of optical fiber ribbons. The interior surface closely bounds the stack, and the buffer encasement is easily removable from the stack. The buffer encasement can be is easily removable from the stack because the buffer encasement is thin and is constructed of a material that is capable of being easily torn. The buffer encasement can be is easily removable from the stack because the buffer encasement defines a longitudinally extending weakened portion that is capable of being more easily torn than the remainder of the buffer encasement. The weakened portion is operative so that when the weakened portion is torn the buffer encasement defines longitudinally extending edges on the opposite sides of the tear. The edges can be separated from one another to define an opening therebetween through which the stack of optical fiber ribbons can be accessed.
    Type: Application
    Filed: September 15, 1999
    Publication date: June 20, 2002
    Inventors: NATHAN E. HARDWICK, III, KENNETH WADE JACKSON, CLYDE JEFFERSON LEVER, RICHARD HARTFORD NORRIS, JIM JENQTSONG SHEU, RICHARD DALTON SMALL, JR., CARL RAYMOND TAYLOR, PETER A. WEIMANN
  • Patent number: 6404962
    Abstract: A buffer encasement has a longitudinally extending interior surface that extends around and defines a longitudinally extending passage containing a stack of optical fiber ribbons. The interior surface closely bounds the stack, and the buffer encasement is easily removable from the stack. The buffer encasement can be is easily removable from the stack because the buffer encasement is thin and is constructed of a material that is capable of being easily torn. The buffer encasement can be is easily removable from the stack because the buffer encasement defines a longitudinally extending weakened portion that is capable of being more easily torn than the remainder of the buffer encasement. The weakened portion is operative so that when the weakened portion is torn the buffer encasement defines longitudinally extending edges on the opposite sides of the tear. The edges can be separated from one another to define an opening therebetween through which the stack of optical fiber ribbons can be accessed.
    Type: Grant
    Filed: September 15, 1999
    Date of Patent: June 11, 2002
    Assignee: Fitel USA Corp.
    Inventors: Nathan E. Hardwick, III, Kenneth Wade Jackson, Clyde Jefferson Lever, Richard Hartford Norris, Jim Jenqtsong Sheu, Richard Dalton Small, Jr., Carl Raymond Taylor, Peter A. Weimann
  • Patent number: 6321013
    Abstract: An optical module includes a stack of optical fiber ribbons that are within a buffer encasement, such as a thin sheath, that closely bounds the periphery of the stack. The optical modules can be rectangular, so that the optical modules can be readily stacked in a manner that results in a very space efficient fiber optic cable. The optical modules can be tested prior to being incorporated into the fiber optic cable so as to maximize the probability of the fiber optic cable being fully operable. The sheath cushions all of the sides of the stack. In some optical modules, the stack is movable relative to the sheath and the optical fiber ribbons are movable relative to one another.
    Type: Grant
    Filed: September 15, 1999
    Date of Patent: November 20, 2001
    Assignee: Lucent Technologies, Inc.
    Inventors: Nathan E. Hardwick, III, Kenneth Wade Jackson, Clyde Jefferson Lever, Richard Hartford Norris, Jim Jenqtsong Sheu, Richard Dalton Small, Jr., Carl Raymond Taylor, Peter A. Weimann
  • Patent number: 6317542
    Abstract: A fiber optic cable includes multiple differently sized stacks of optical fiber ribbons. The stacks include a central stack that is approximately centrally located in a jacket passage and peripheral stacks positioned radially around the central stack. A difference exists between the dimensions of the central stack and the dimensions of one or more of the peripheral stacks. Another fiber optic cable has multiple longitudinally extending stacks of optical fiber ribbons that are within a jacket passage. The stacks include a central stack that is approximately centrally located in the jacket passage, and peripheral stacks positioned radially around the central stack. Buffer encasements that respectively contain the peripheral stacks are longitudinally stranded around the central stack.
    Type: Grant
    Filed: September 15, 1999
    Date of Patent: November 13, 2001
    Assignee: Lucent Technologies, Inc.
    Inventors: Nathan E. Hardwick, III, Kenneth Wade Jackson, Clyde Jefferson Lever, Richard Hartford Norris, Jim Jenqtsong Sheu, Richard Dalton Small, Jr., Carl Raymond Taylor, Peter A. Weimann
  • Patent number: 6304704
    Abstract: Embodiments of the invention include an optical energy transmission system, method and apparatus having improved mode coupling. According to embodiments of the invention, an optical energy transmission medium such as an optical fiber includes bubbles formed therein for inducing microbending of the optical energy transmission medium, thus promoting advantageous mode coupling, which improves bandwidth potential by reducing dispersion. The bubbles are formed, e.g., in one or more buffer region layers and/or at the interface between the coating and buffer regions. The method for manufacturing the inventive optical energy transmission medium includes controllably forming one or more buffer region layers around the coated optical fiber or other transmission medium in such a way that that a desired amount of bubbles is created and maintained within one or more of the buffer region layers and/or at the interface between the coating and buffer regions.
    Type: Grant
    Filed: July 27, 1999
    Date of Patent: October 16, 2001
    Assignee: Lucent Technologies Inc.
    Inventors: David Kalish, Paul Emilien Neveux, Jr., Albert John Ritger, Carl Raymond Taylor, John Michael Turnipseed
  • Patent number: 6304705
    Abstract: Embodiments of the invention include an optical energy transmission system, method and apparatus having improved mode coupling. According to embodiments of the invention, an optical energy transmission medium such as an optical fiber includes a plurality of particles formed in one or more coating region layers surrounding the cladding region and/or one or more buffer region layers surrounding the coating region for inducing microbending thereof, thus promoting advantageous mode coupling, which improves bandwidth potential by reducing dispersion. The method for manufacturing the inventive optical energy transmission medium includes forming one or more coating region layers and/or one or more buffer region layers containing particles such as fumed silica in such a way that particles are maintained within the optical energy transmission medium and form controlled perturbations along the optical fiber that enhance mode coupling to the extent that bandwidth of the optical fiber is improved.
    Type: Grant
    Filed: July 27, 1999
    Date of Patent: October 16, 2001
    Assignee: Lucent Technologies Inc.
    Inventors: David Kalish, Paul Emilien Neveux, Jr., Albert John Ritger, Carl Raymond Taylor, John Michael Turnipseed
  • Patent number: 6215932
    Abstract: A stack of optical fiber ribbons is enclosed in a buffer encasement having a relatively soft inner portion and an relatively hard outer portion. The inner portion has an interior surface extends around and defines a longitudinally extending passage that contains the stack, and the interior surface closely bounds the stack. The outer portion extends around, closely bounds and contacts the inner portion, and has a modulus of elasticity that is greater than the modulus of elasticity of the inner portion. In accordance with one example of the invention, the inner portion has an exterior surface that extends around and is spaced apart from the passage, and the outer portion has an interior surface that extends around, closely bounds, and engages the exterior surface of the inner portion, whereby the buffer encasement has multiple plies. In contrast, in accordance with another example of the invention, a surface is not defined between the inner portion and the outer portion.
    Type: Grant
    Filed: September 15, 1999
    Date of Patent: April 10, 2001
    Assignee: Lucent Technologies Inc.
    Inventors: Nathan E. Hardwick, III, Kenneth Wade Jackson, Clyde Jefferson Lever, Richard Hartford Norris, Jim Jenqtsong Sheu, Richard Dalton Small, Jr., Carl Raymond Taylor, Peter A. Weimann
  • Patent number: 6215934
    Abstract: An optical fiber [10] having protective coating materials [14, 15], which surround an elongated strand of glass [12], is designed for improved strippability. Preferably, the optical fiber includes two layers (primary and secondary) of radiation-cured polymeric materials surrounding the glass fiber. The primary layer has an equilibrium (in-situ) modulus that resides within the range 120 to 500 psi. Additionally, the primary coating has a pull-out force (adhesion) that is less than 1.2 pounds per centimeter of length (lb/cm), and preferably resides within the range 0.5 to 1.0 lb/cm. It has been found that by increasing the equilibrium modulus, delamination resistance is increased. This has allowed designers to decrease pull-out force while maintaining a suitable delamination resistance. As a result, coating materials can now be stripped away from a glass fiber with little or no residue.
    Type: Grant
    Filed: October 1, 1998
    Date of Patent: April 10, 2001
    Assignee: Lucent Technologies, Inc.
    Inventors: Charles Joseph Aloisio, Jr., Arturo Hale, Valerie Jeanne Kuck, Peter Gerald Simpkins, Priya L. Tabaddor, Carl Raymond Taylor
  • Patent number: 6134364
    Abstract: An optical fiber ribbon in which a plurality of optical fibers are held in an array has a matrix material for bonding to the fibers to form the ribbon. The matrix material has certain characteristics which serve to enhance fiber access, among which are an elastic modulus from 600 to 1200 MPa at room temperature, from 100 to 280 MPa at 100.degree. C., and from 15 to 45 MPa at temperatures greater than 170.degree. C. The matrix material swells in ethanol more than 15% by volume within 20 minutes, and is virtually immune to the action of cleaning solvents. The matrix material has a surface tension of 20-35 mJ/m.sup.2 as do the color coding inks which identify the fibers.
    Type: Grant
    Filed: October 21, 1998
    Date of Patent: October 17, 2000
    Assignee: Lucent Technologies Inc.
    Inventors: Raymond Peter DeFabritis, Kenneth Wade Jackson, Kariofilis Konstadinidis, Shahabuddin Siddiqui, Neil Wilbur Sollenberger, Carl Raymond Taylor, John Michael Turnipseed