Patents by Inventor Carlo Giovanni Traverso
Carlo Giovanni Traverso has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20210231645Abstract: Methods and compositions for determining multiplex interactions between drugs and drug transporters using an intestinal tissue explant are provided.Type: ApplicationFiled: December 10, 2020Publication date: July 29, 2021Inventors: Robert S. LANGER, Carlo Giovanni TRAVERSO, Yunhua SHI, Vance SOARES, Daniel REKER
-
Publication number: 20210177938Abstract: The present disclosure provides compositions, methods, and kits that enable the in situ growth of polymers on or within a subject. In some aspects, the monomer, dopamine, polymerizes in vivo to form a polymer on a tissue. In additional aspects, the compositions, methods, and kits are useful for treating or preventing a disease or disorder.Type: ApplicationFiled: December 10, 2020Publication date: June 17, 2021Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.Inventors: Robert S. Langer, Carlo Giovanni Traverso, Junwei Li, Thomas Wang, Ameya R. Kirtane, Yunhua Shi
-
Publication number: 20210177750Abstract: Residence structures, systems, and related methods are generally provided. Certain embodiments comprise administering (e.g., orally) a residence structure to a subject (e.g., a patient) such that the residence structure is retained at a location internal to the subject for a particular amount of time (e.g., at least about 24 hours) before being released. The residence structure may be, in some cases, a gastric residence structure. In some embodiments, the structures and systems described herein comprise one or more materials configured for high levels of active substances (e.g., a therapeutic agent) loading, high active substance and/or structure stability in acidic environments, mechanical flexibility and strength in an internal orifice (e.g., gastric cavity), easy passage through the GI tract until delivery to at a desired internal orifice (e.g., gastric cavity), and/or rapid dissolution/degradation in a physiological environment (e.g., intestinal environment) and/or in response to a chemical stimulant (e.Type: ApplicationFiled: February 12, 2021Publication date: June 17, 2021Applicants: Massachusetts Institute of Technology, The Brigham and Womens's Hospital, Inc.Inventors: Andrew Bellinger, Shiyi Zhang, Carlo Giovanni Traverso, Robert S. Langer, Stacey Mo, Tyler Grant, Mousa Jafari, Dean Liang Glettig, Angela DiCiccio, Lowell L. Wood, JR., Philip A. Eckhoff
-
Publication number: 20210154396Abstract: Self-righting articles, such as self-righting capsules for administration to a subject, are generally provided. In some embodiments, the self-righting article may be configured such that the article may orient itself relative to a surface (e.g., a surface of a tissue of a subject). The self-righting articles described herein may comprise one or more tissue engaging surfaces configured to engage (e.g., interface with, inject into, anchor) with a surface (e.g., a surface of a tissue of a subject). In some embodiments, the self-righting article may have a particular shape and/or distribution of density (or mass) which, for example, enables the self-righting behavior of the article. In some embodiments, the self-righting article may comprise a tissue interfacing component and/or a pharmaceutical agent (e.g., for delivery of the active pharmaceutical agent to a location internal of the subject).Type: ApplicationFiled: May 17, 2018Publication date: May 27, 2021Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.Inventors: Carlo Giovanni Traverso, Alex G. Abramson, Ester Caffarel Salvador, Niclas Roxhed, Minsoo Khang, Taylor Bensel, Robert S. Langer
-
Publication number: 20210154457Abstract: Methods of manufacturing tissue interfacing components, such as solid needles comprising one or more therapeutic agents, are disclosed. In some embodiments, a method for manufacturing a tissue interfacing component comprises compressing a granular therapeutic agent within a mold cavity of a mold to form a solid tissue interfacing component. The mold cavity may define an elongated shape extending along a longitudinal axis from an opening of the mold cavity to a distal end of the mold cavity, and the granular therapeutic agent may be compressed by moving a mold punch along the longitudinal axis towards the distal end. After compressing the granular therapeutic agent to form the solid tissue interfacing component, the tissue interfacing component may be removed from the mold and subsequently inserted into tissue to deliver the therapeutic agent to a subject.Type: ApplicationFiled: November 21, 2019Publication date: May 27, 2021Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc., Novo Nordisk A/SInventors: Carlo Giovanni Traverso, Morten Revsgaard Frederiksen, Jorrit Jeroen Water
-
Publication number: 20210128460Abstract: Residence structures, systems, and related methods are generally provided. Certain embodiments comprise administering (e.g., orally) a residence structure to a subject (e.g., a patient) such that the residence structure is retained at a location internal to the subject for a particular amount of time (e.g., at least about 24 hours) before being released. The residence structure may be, in some cases, a gastric residence structure. In some embodiments, the structures and systems described herein comprise one or more materials configured for high levels of active substances (e.g., a therapeutic agent) loading, high active substance and/or structure stability in acidic environments, mechanical flexibility and strength in an internal orifice (e.g., gastric cavity), easy passage through the GI tract until delivery to at a desired internal orifice (e.g., gastric cavity), and/or rapid dissolution/degradation in a physiological environment (e.g., intestinal environment) and/or in response to a chemical stimulant (e.Type: ApplicationFiled: December 18, 2020Publication date: May 6, 2021Applicants: Massachusetts Institute of Technology, The Brigham and Women't Hospital, Inc.Inventors: Andrew Bellinger, Shiyi Zhang, Carlo Giovanni Traverso, Robert S. Langer, Stacy Mo, Tyler Grant, Mousa Jafari, Dean Liang Glettig, Angela DiCiccio, Lowell L. Wood, JR., Philip A. Eckhoff
-
Publication number: 20210113460Abstract: Residence structures, systems, and related methods are generally provided. Certain embodiments comprise administering (e.g., orally) a residence structure to a subject (e.g., a patient) such that the residence structure is retained at a location internal to the subject for a particular amount of time (e.g., at least about 24 hours) before being released. The residence structure may be, in some cases, a gastric residence structure. In some embodiments, the structures and systems described herein comprise one or more materials configured for high levels of active substances (e.g., a therapeutic agent) loading, high active substance and/or structure stability in acidic environments, mechanical flexibility and strength in an internal orifice (e.g., gastric cavity), easy passage through the GI tract until delivery to at a desired internal orifice (e.g., gastric cavity), and/or rapid dissolution/degradation in a physiological environment (e.g., intestinal environment) and/or in response to a chemical stimulant (e.Type: ApplicationFiled: December 18, 2020Publication date: April 22, 2021Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.Inventors: Andrew Bellinger, Shiyi Zhang, Carlo Giovanni Traverso, Robert S. Langer, Stacy Mo, Tyler Grant, Mousa Jafari, Dean Liang Glettig, Angela DiCiccio, Lowell L. Wood, JR., Philip A. Eckhoff
-
Publication number: 20210106525Abstract: Compositions and methods for effective delivery of oligonucleotide therapeutics, and in particular locked nucleic acid (AON)-containing gapmers, into the gastrointestinal (GI) tract are provided.Type: ApplicationFiled: October 9, 2020Publication date: April 15, 2021Inventors: Carlo Giovanni TRAVERSO, Yunhua SHI, Thomas Christian VON ERLACH, Robert S. LANGER
-
Publication number: 20210093564Abstract: Residence structures, systems, and related methods are generally provided. Certain embodiments comprise administering (e.g., orally) a residence structure to a subject (e.g., a patient) such that the residence structure is retained at a location internal to the subject for a particular amount of time (e.g., at least about 24 hours) before being released. The residence structure may be, in some cases, a gastric residence structure. In some embodiments, the structures and systems described herein comprise one or more materials configured for high levels of active substances (e.g., a therapeutic agent) loading, high active substance and/or structure stability in acidic environments, mechanical flexibility and strength in an internal orifice (e.g., gastric cavity), easy passage through the GI tract until delivery to at a desired internal orifice (e.g., gastric cavity), and/or rapid dissolution/degradation in a physiological environment (e.g., intestinal environment) and/or in response to a chemical stimulant (e.Type: ApplicationFiled: June 11, 2020Publication date: April 1, 2021Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.Inventors: Andrew Bellinger, Shiyi Zhang, Carlo Giovanni Traverso, Robert S. Langer, Stacy Mo, Tyler Grant, Mousa Jafari, Dean Liang Glettig, Angela DiCiccio, Lowell L. Wood, Philip A. Eckhoff
-
Patent number: 10953208Abstract: In accordance with the invention, compositions, devices, and related methods have been developed for medical-related and other applications. In some embodiments, the devices and compositions described herein comprise a triggerable shape memory polymer network. In certain embodiments, the polymer network comprises a covalently crosslinked polymeric material and a non-crosslinked polymeric material associated with the crosslinked polymeric material. In some cases, the polymer network has a first configuration (e.g., as polymerized), and a second configuration (e.g., upon heating and deformation), such that the polymer network can be triggered to recover the first configuration upon heating the polymeric material above a softening temperature of the polymeric material. In certain embodiments, the polymer network comprises a plurality of particles capable of increasing the temperature of the polymer network (e.g.Type: GrantFiled: April 29, 2016Date of Patent: March 23, 2021Assignee: Massachusetts Institute of TechnologyInventors: Shiyi Zhang, Yida Zhao, Carlo Giovanni Traverso, Robert S. Langer
-
Publication number: 20210046011Abstract: Articles and methods for delivering a therapeutic agent to a subject are described. These articles and methods may be useful, in some cases, for the delivery of therapeutic agents to the colon of a subject. In some embodiments, an article is configured to release a secretion inducing agent e.g., to stimulate the release of intestinal fluids. The article, in some embodiments, comprises a therapeutic agent such that the stimulated release of intestinal fluid increases the amount of therapeutic agent available for absorption by the colon. For example, in some embodiments, the articles and methods described herein advantageously promote increased absorption of therapeutic agents in subjects as compared to traditionally administered therapeutic agents without additional components such as a secretion inducing agent. In some embodiments, articles and methods described herein may increase the motility of the colon of a subject.Type: ApplicationFiled: August 12, 2020Publication date: February 18, 2021Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.Inventors: Carlo Giovanni Traverso, Joshua Korzenik, Robert S. Langer, Christoph Winfried Johannes Steiger
-
Patent number: 10879983Abstract: Multiple antennas of a beamformer may simultaneously transmit wireless signals at different frequencies. The signals may comprise synchronized, identical wireless commands, each at a different carrier frequency. The transmitted signals may constructively and destructively interfere with each other at a receiver antenna, to form a beat signal. When the transmitted signals constructively interfere, the beat signal may cause a voltage in the receiver to exceed a threshold voltage. The threshold voltage may be a minimum voltage at which a device, which is operatively connected to the receiver antenna, is able to perform energy harvesting or wireless communication. The beamformer may operate under blind channel conditions, because the transmitted frequencies may be selected in such a way as to maximize peak power delivered under all possible channel conditions. The beamformer may deliver wireless power to a sensor or actuator that is located deep inside bodily tissue.Type: GrantFiled: May 17, 2020Date of Patent: December 29, 2020Assignee: Massachusetts Institute of TechnologyInventors: Yunfei Ma, Zhihong Luo, Christoph Steiger, Carlo Giovanni Traverso, Fadel Adib
-
Publication number: 20200397953Abstract: The present disclosure provides methods of forming interlayer tissue cushions (e.g., submucosal cushions) using shear-thinning hydrogels comprising an anionic polysaccharide and layered silicate and subsequent use of the cushions for removing protrusions (e.g., lesions, such as polyps or tumors) from above the cushions. Further provided are uses, methods of treatment, and kits.Type: ApplicationFiled: April 24, 2020Publication date: December 24, 2020Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.Inventors: Robert S. Langer, Carlo Giovanni Traverso, Jinyao Liu, Yan Pang
-
Publication number: 20200384250Abstract: A device for the delivery of an agent to an intestinal site has a backing element, a mucoadhesive element for adhering the device to the intestinal site, and a reservoir comprising the agent. The mucoadhesive element includes a polymer, an opposing surface having the capacity to adhere to the intestinal site, and a population of passageway(s) extending from the reservoir to the opposing surface for delivery of the agent from the reservoir to the intestinal site, each of the passageway(s) having a minimum diameter greater than 10 microns, the diameter being determined by cryogenic scanning electron microscopy after 30 minutes of hydration at 20° C. in phosphate buffered saline at pH 6.5.Type: ApplicationFiled: July 31, 2020Publication date: December 10, 2020Inventors: Daniel BONNER, Colin Robert GARDNER, Thomas H. JOZEFIAK, Christopher R. LOOSE, David LUCCHINO, Andrew Craig MILLER, Carlo Giovanni TRAVERSO, Ayush VERMA, Arthur J. COURY, Peter TRAN, John JANTZ
-
Publication number: 20200375868Abstract: A method of delivering a recombinant virus to a skin tissue is provided. The method includes applying ultrasound to the skin tissue, and administering the recombinant virus to the skin tissue.Type: ApplicationFiled: May 14, 2018Publication date: December 3, 2020Inventors: Denitsa M. Milanova, George M. Church, Noah Davidsohn, Carl Schoellhammer, Robert S. Langer, Anna I. Mandinova, Carlo Giovanni Traverso, Li Li
-
Publication number: 20200376192Abstract: Self-righting articles, such as self-righting capsules for administration to a subject, are generally provided. In some embodiments, the self-righting article may be configured such that the article may orient itself relative to a surface (e.g., a surface of a tissue of a subject). The self-righting articles described herein may comprise one or more tissue engaging surfaces configured to engage (e.g., interface with, inject into, anchor) with a surface (e.g., a surface of a tissue of a subject). In some embodiments, the self-righting article may have a particular shape and/or distribution of density (or mass) which, for example, enables the self-righting behavior of the article. In some embodiments, the self-righting article may comprise a tissue interfacing component and/or a pharmaceutical agent (e.g., for delivery of the active pharmaceutical agent to a location internal of the subject).Type: ApplicationFiled: June 12, 2020Publication date: December 3, 2020Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.Inventors: Robert S. Langer, Carlo Giovanni Traverso, Alex G. Abramson, Michael Williams, Jacob Wainer
-
Patent number: 10849853Abstract: Residence devices as well as their related methods of manufacture and use are generally provided. In some embodiments, a residence device includes a plurality of self-assembling structures that assemble in vivo to form an aggregate structure. Each structure of the plurality of structures includes a first side and a first attachment point that attaches to a second attachment point on another structure of the plurality of structures. The aggregate structure may be sized and shaped to maintain an in vivo position relative to an internal orifice of a subject. The attachment between the first and second attachment points may degrade after a period of time.Type: GrantFiled: June 11, 2015Date of Patent: December 1, 2020Assignees: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.Inventors: Andrew Bellinger, Shiyi Zhang, Carlo Giovanni Traverso, Robert S. Langer, Stacy Mo, Jiaqi Lin, Angela DiCiccio, Dean Liang Glettig, Lowell L. Wood, Jr., Philip A. Eckhoff
-
Publication number: 20200352870Abstract: Compositions, articles, and methods for targeted drug delivery, such as thermoresponsive hydrogel polymers, are generally provided. In one aspect, the compositions and articles comprise a thermoresponsive hydrogel polymer comprising a releasable therapeutic agent. In some cases, the compositions described herein have advantageous combinations of properties including mechanical strength, biocompatibility, tunable charge densities, thermal responsiveness, drug loading, and/or configurations for targeted drug delivery. In one embodiment, the composition comprises a solution comprising a thermoresponsive polymer including one or more ligands attached to the polymer, wherein the solution is configured to undergo a sol-to-gel transition under physiological conditions. In another embodiment, the composition comprises a plurality of nanoparticles e.g., associated with the thermoresponsive polymer. In yet another embodiment, the composition comprises a therapeutic agent e.g.Type: ApplicationFiled: December 8, 2017Publication date: November 12, 2020Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital Inc.Inventors: Carlo Giovanni Traverso, Ashok Kakkar, Joshua Korzenik, Robert S. Langer, Sufeng Zhang
-
Patent number: 10814115Abstract: The present disclosure provides devices and uses thereof. A devices disclosed herein comprises a plurality of microneedles adapted to protrude from the device. In some embodiments, a device is dimensioned and constructed to carry a payload, so that the payload can be delivered to an internal tissue of a subject or through a wall of a vessel after interaction with microneedles. In some embodiments, devices can be used for oral or intravenous administration. In some embodiments, devices can be used for implantation such as vaginal, rectal, urethral or bladder suppository or pessary.Type: GrantFiled: December 27, 2012Date of Patent: October 27, 2020Assignees: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, THE GENERAL HOSPITAL CORPORATIONInventors: Carlo Giovanni Traverso, Avraham D. Schroeder, Baris Erinc Polat, Carl Magnus Schoellhammer, Daniel Blankschtein, Daniel G. Anderson, Robert S. Langer
-
Publication number: 20200324095Abstract: Components with relatively high loading of active pharmaceutical ingredients are generally provided. In some embodiments, the component (e.g., a tissue interfacing component) comprises a solid therapeutic agent and a supporting material such that the solid therapeutic agent is present in the component in an amount of greater than or equal to 10 wt % versus the total weight of the tissue interfacing component. Such tissue-interfacing components may be useful for delivery of API doses e.g., to a subject. Advantageously, in some embodiments, the reduction of volume required to deliver the required API dose as compared to a liquid formulation permits the creation of solid needle delivery systems for a wide variety of drugs in a variety of places/tissues (e.g., tongue, GI mucosal tissue, skin) and/or reduces and/or eliminates the application of an external force in order to inject a drug solution through the small opening in the needle.Type: ApplicationFiled: May 17, 2018Publication date: October 15, 2020Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.Inventors: Carlo Giovanni Traverso, Alex G. Abramson, Ester Caffarel Salvador, Niclas Roxhed, Minsoo Khang, Taylor Bensel, Robert S. Langer