Patents by Inventor Carlo Giovanni Traverso

Carlo Giovanni Traverso has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200397953
    Abstract: The present disclosure provides methods of forming interlayer tissue cushions (e.g., submucosal cushions) using shear-thinning hydrogels comprising an anionic polysaccharide and layered silicate and subsequent use of the cushions for removing protrusions (e.g., lesions, such as polyps or tumors) from above the cushions. Further provided are uses, methods of treatment, and kits.
    Type: Application
    Filed: April 24, 2020
    Publication date: December 24, 2020
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Robert S. Langer, Carlo Giovanni Traverso, Jinyao Liu, Yan Pang
  • Publication number: 20200384250
    Abstract: A device for the delivery of an agent to an intestinal site has a backing element, a mucoadhesive element for adhering the device to the intestinal site, and a reservoir comprising the agent. The mucoadhesive element includes a polymer, an opposing surface having the capacity to adhere to the intestinal site, and a population of passageway(s) extending from the reservoir to the opposing surface for delivery of the agent from the reservoir to the intestinal site, each of the passageway(s) having a minimum diameter greater than 10 microns, the diameter being determined by cryogenic scanning electron microscopy after 30 minutes of hydration at 20° C. in phosphate buffered saline at pH 6.5.
    Type: Application
    Filed: July 31, 2020
    Publication date: December 10, 2020
    Inventors: Daniel BONNER, Colin Robert GARDNER, Thomas H. JOZEFIAK, Christopher R. LOOSE, David LUCCHINO, Andrew Craig MILLER, Carlo Giovanni TRAVERSO, Ayush VERMA, Arthur J. COURY, Peter TRAN, John JANTZ
  • Publication number: 20200375868
    Abstract: A method of delivering a recombinant virus to a skin tissue is provided. The method includes applying ultrasound to the skin tissue, and administering the recombinant virus to the skin tissue.
    Type: Application
    Filed: May 14, 2018
    Publication date: December 3, 2020
    Inventors: Denitsa M. Milanova, George M. Church, Noah Davidsohn, Carl Schoellhammer, Robert S. Langer, Anna I. Mandinova, Carlo Giovanni Traverso, Li Li
  • Publication number: 20200376192
    Abstract: Self-righting articles, such as self-righting capsules for administration to a subject, are generally provided. In some embodiments, the self-righting article may be configured such that the article may orient itself relative to a surface (e.g., a surface of a tissue of a subject). The self-righting articles described herein may comprise one or more tissue engaging surfaces configured to engage (e.g., interface with, inject into, anchor) with a surface (e.g., a surface of a tissue of a subject). In some embodiments, the self-righting article may have a particular shape and/or distribution of density (or mass) which, for example, enables the self-righting behavior of the article. In some embodiments, the self-righting article may comprise a tissue interfacing component and/or a pharmaceutical agent (e.g., for delivery of the active pharmaceutical agent to a location internal of the subject).
    Type: Application
    Filed: June 12, 2020
    Publication date: December 3, 2020
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Robert S. Langer, Carlo Giovanni Traverso, Alex G. Abramson, Michael Williams, Jacob Wainer
  • Patent number: 10849853
    Abstract: Residence devices as well as their related methods of manufacture and use are generally provided. In some embodiments, a residence device includes a plurality of self-assembling structures that assemble in vivo to form an aggregate structure. Each structure of the plurality of structures includes a first side and a first attachment point that attaches to a second attachment point on another structure of the plurality of structures. The aggregate structure may be sized and shaped to maintain an in vivo position relative to an internal orifice of a subject. The attachment between the first and second attachment points may degrade after a period of time.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: December 1, 2020
    Assignees: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Andrew Bellinger, Shiyi Zhang, Carlo Giovanni Traverso, Robert S. Langer, Stacy Mo, Jiaqi Lin, Angela DiCiccio, Dean Liang Glettig, Lowell L. Wood, Jr., Philip A. Eckhoff
  • Publication number: 20200352870
    Abstract: Compositions, articles, and methods for targeted drug delivery, such as thermoresponsive hydrogel polymers, are generally provided. In one aspect, the compositions and articles comprise a thermoresponsive hydrogel polymer comprising a releasable therapeutic agent. In some cases, the compositions described herein have advantageous combinations of properties including mechanical strength, biocompatibility, tunable charge densities, thermal responsiveness, drug loading, and/or configurations for targeted drug delivery. In one embodiment, the composition comprises a solution comprising a thermoresponsive polymer including one or more ligands attached to the polymer, wherein the solution is configured to undergo a sol-to-gel transition under physiological conditions. In another embodiment, the composition comprises a plurality of nanoparticles e.g., associated with the thermoresponsive polymer. In yet another embodiment, the composition comprises a therapeutic agent e.g.
    Type: Application
    Filed: December 8, 2017
    Publication date: November 12, 2020
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital Inc.
    Inventors: Carlo Giovanni Traverso, Ashok Kakkar, Joshua Korzenik, Robert S. Langer, Sufeng Zhang
  • Patent number: 10814115
    Abstract: The present disclosure provides devices and uses thereof. A devices disclosed herein comprises a plurality of microneedles adapted to protrude from the device. In some embodiments, a device is dimensioned and constructed to carry a payload, so that the payload can be delivered to an internal tissue of a subject or through a wall of a vessel after interaction with microneedles. In some embodiments, devices can be used for oral or intravenous administration. In some embodiments, devices can be used for implantation such as vaginal, rectal, urethral or bladder suppository or pessary.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: October 27, 2020
    Assignees: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, THE GENERAL HOSPITAL CORPORATION
    Inventors: Carlo Giovanni Traverso, Avraham D. Schroeder, Baris Erinc Polat, Carl Magnus Schoellhammer, Daniel Blankschtein, Daniel G. Anderson, Robert S. Langer
  • Publication number: 20200324095
    Abstract: Components with relatively high loading of active pharmaceutical ingredients are generally provided. In some embodiments, the component (e.g., a tissue interfacing component) comprises a solid therapeutic agent and a supporting material such that the solid therapeutic agent is present in the component in an amount of greater than or equal to 10 wt % versus the total weight of the tissue interfacing component. Such tissue-interfacing components may be useful for delivery of API doses e.g., to a subject. Advantageously, in some embodiments, the reduction of volume required to deliver the required API dose as compared to a liquid formulation permits the creation of solid needle delivery systems for a wide variety of drugs in a variety of places/tissues (e.g., tongue, GI mucosal tissue, skin) and/or reduces and/or eliminates the application of an external force in order to inject a drug solution through the small opening in the needle.
    Type: Application
    Filed: May 17, 2018
    Publication date: October 15, 2020
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Carlo Giovanni Traverso, Alex G. Abramson, Ester Caffarel Salvador, Niclas Roxhed, Minsoo Khang, Taylor Bensel, Robert S. Langer
  • Publication number: 20200306515
    Abstract: Self-righting articles, such as self-righting capsules for administration to a subject, are generally provided. In some embodiments, the self-righting article may be configured such that the article may orient itself relative to a surface (e.g., a surface of a tissue of a subject). The self-righting articles described herein may comprise one or more tissue engaging surfaces configured to engage (e.g., interface with, inject into, anchor) with a surface (e.g., a surface of a tissue of a subject). In some embodiments, the self-righting article may have a particular shape and/or distribution of density (or mass) which, for example, enables the self-righting behavior of the article. In some embodiments, the self-righting article may comprise a tissue interfacing component and/or a pharmaceutical agent (e.g., for delivery of the active pharmaceutical agent to a location internal of the subject).
    Type: Application
    Filed: May 17, 2018
    Publication date: October 1, 2020
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc
    Inventors: Carlo Giovanni Traverso, Alex G. Abramson, Ester Caffarel Salvador, Niclas Roxhed, Minsoo Khang, Taylor Bensel, David Dellal, Robert S. Langer
  • Publication number: 20200280356
    Abstract: Multiple antennas of a beamformer may simultaneously transmit wireless signals at different frequencies. The signals may comprise synchronized, identical wireless commands, each at a different carrier frequency. The transmitted signals may constructively and destructively interfere with each other at a receiver antenna, to form a beat signal. When the transmitted signals constructively interfere, the beat signal may cause a voltage in the receiver to exceed a threshold voltage. The threshold voltage may be a minimum voltage at which a device, which is operatively connected to the receiver antenna, is able to perform energy harvesting or wireless communication. The beamformer may operate under blind channel conditions, because the transmitted frequencies may be selected in such a way as to maximize peak power delivered under all possible channel conditions. The beamformer may deliver wireless power to a sensor or actuator that is located deep inside bodily tissue.
    Type: Application
    Filed: May 17, 2020
    Publication date: September 3, 2020
    Inventors: Yunfei Ma, Zhihong Luo, Christoph Steiger, Carlo Giovanni Traverso, Fadel Adib
  • Publication number: 20200246545
    Abstract: Self-righting articles, such as self-righting capsules for administration to a subject, are generally provided. In some embodiments, the self-righting article may be configured such that the article may orient itself relative to a surface (e.g., a surface of a tissue of a subject). The self-righting articles described herein may comprise one or more tissue engaging surfaces configured to engage (e.g., interface with, inject into, anchor) with a surface (e.g., a surface of a tissue of a subject). In some embodiments, the self-righting article may have a particular shape and/or distribution of density (or mass) which, for example, enables the self-righting behavior of the article. In some embodiments, the self-righting article may comprise a tissue interfacing component and/or a pharmaceutical agent (e.g., for delivery of the active pharmaceutical agent to a location internal of the subject) such as a liquid pharmaceutical agent.
    Type: Application
    Filed: January 31, 2020
    Publication date: August 6, 2020
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital Inc., Novo Nordisk A/S
    Inventors: Robert S. Langer, Carlo Giovanni Traverso, Alex G. Abramson, Morten Revsgaard Frederiksen, Mikkel Oliver Jespersen, Brian Mouridsen, Jesper Windum, Mette Poulsen, Brian Jensen, Jorrit Jeroen Water, Mikkel Wennemoes Hvitfeld Ley, Xiaoya Lu
  • Publication number: 20200230244
    Abstract: Triggerable hydrogel compositions and related methods are generally disclosed. In some embodiments, the compositions and related methods may be used for medical-related or other applications. For example, the compositions and methods described herein may be useful, for example, in biomedical applications such as articles for (e.g., gastric) retention. In some embodiments, methods for deploying and/or removing an article comprising the composition, such as an article for gastric retention, are provided. The article and/or composition may be removed internally from a subject by, for example, introducing at least one reagent (e.g., one reagent, two reagents) such that at least a portion of the composition disassociates. In certain embodiments, the composition comprises a polymer network comprising two or more interpenetrating polymers. In some cases, a first polymer comprises a first cross-link moiety configured to dissociate upon interaction with a reagent.
    Type: Application
    Filed: November 9, 2017
    Publication date: July 23, 2020
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Carlo Giovanni Traverso, Jinyao Liu, Robert S. Langer
  • Patent number: 10716752
    Abstract: Certain embodiments involve gastric residence structures which can be administered to a subject (e.g., a patient) in a configuration constrained by a retaining element, and configured to mediate a change in shape when unconstrained by the retaining element to assume a configuration in the stomach in which is retained and unable to pass through the gastric pyloric orifice of the subject under gastrointestinal physiological conditions. The residence structures can be loaded with an agent for release in the stomach.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: July 21, 2020
    Assignees: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Andrew Bellinger, Shiyi Zhang, Carlo Giovanni Traverso, Robert S. Langer, Stacy Mo, Tyler Grant, Mousa Jafari, Dean Liang Glettig, Angela DiCiccio, Lowell L. Wood, Jr., Philip A. Eckhoff
  • Patent number: 10716751
    Abstract: Certain embodiments involve administering a residence structure to a subject (e.g., a patient) in a constrained configuration, then unconstraining the structure such that it is retained at a location internally of the subject for a period of time. The structure includes a loadable component that can carry an active substance for release internally of the subject.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: July 21, 2020
    Assignees: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Andrew Bellinger, Shiyi Zhang, Carlo Giovanni Traverso, Robert S. Langer, Stacy Mo, Tyler Grant, Mousa Jafari, Dean Liang Glettig, Angela DiCiccio, Lowell L. Wood, Jr., Philip A. Eckhoff
  • Publication number: 20200197538
    Abstract: A method for the systemic delivery of a polypeptide within a subject is provided by creating genetically modified skin cells via topical introduction of a genetically engineered virus which delivers a nucleic acid encoding a therapeutic polypeptide for expression by the skin cells, wherein the expressed therapeutic polypeptide is secreted by the skin cells and is introduced into the circulatory system of the subject.
    Type: Application
    Filed: May 14, 2018
    Publication date: June 25, 2020
    Inventors: Denitsa M. Milanova, George M. Church, Noah Davidsohn, Carl Schoellhammer, Robert S. Langer, Anna I. Mandinova, Carlo Giovanni Traverso
  • Patent number: 10693544
    Abstract: Multiple antennas of a beamformer may simultaneously transmit wireless signals at different frequencies. The signals may comprise synchronized, identical wireless commands, each at a different carrier frequency. The transmitted signals may constructively and destructively interfere with each other at a receiver antenna, to form a beat signal. When the transmitted signals constructively interfere, the beat signal may cause a voltage in the receiver to exceed a threshold voltage. The threshold voltage may be a minimum voltage at which a device, which is operatively connected to the receiver antenna, is able to perform energy harvesting or wireless communication. The beamformer may operate under blind channel conditions, because the transmitted frequencies may be selected in such a way as to maximize peak power delivered under all possible channel conditions. The beamformer may deliver wireless power to a sensor or actuator that is located deep inside bodily tissue.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: June 23, 2020
    Assignees: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Yunfei Ma, Zhihong Luo, Christoph Steiger, Carlo Giovanni Traverso, Fadel Adib
  • Publication number: 20200155821
    Abstract: Residence devices for long term delivery of therapeutic compounds and/or for sensing one or more relevant parameters in vivo are disclosed. In one embodiment, a residence device may include a plurality of links interconnected by a corresponding plurality of flexible hinges to permit the residence device to be deformed into a contracted configuration and subsequently permitted to return to an expanded configuration once positioned in a desired location, such as the stomach, of a subject. In some instances, at least a portion of the interconnected links may include a first link segment, a second link segment, and a coupling that selectively connects the first link segment to the second link segment. The coupling may be configured to weaken or decouple a connection between the first link segment and the second link segment when exposed to a temperature greater than a threshold temperature to selectively weaken and/or disassemble the residence device.
    Type: Application
    Filed: November 15, 2019
    Publication date: May 21, 2020
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital,Inc.
    Inventors: Robert S. Langer, Carlo Giovanni Traverso, Sahab Babaee, Simo Pajovic, Jiuyun Shi
  • Publication number: 20200147298
    Abstract: Self-righting articles, such as self-righting capsules for administration to a subject, are generally provided. In some embodiments, the self-righting article may be configured such that the article may orient itself relative to a surface (e.g., a surface of a tissue of a subject). The self-righting articles described herein may comprise one or more tissue engaging surfaces configured to engage (e.g., interface with, inject into, anchor) with a surface (e.g., a surface of a tissue of a subject). In some embodiments, the self-righting article may have a particular shape and/or distribution of density (or mass) which, for example, enables the self-righting behavior of the article. In some embodiments, the self-righting article may comprise a tissue interfacing component and/or a pharmaceutical agent (e.g., for delivery of the active pharmaceutical agent to a location internal of the subject).
    Type: Application
    Filed: May 17, 2018
    Publication date: May 14, 2020
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc., Novo Nordisk A/S
    Inventors: Carlo Giovanni Traverso, Alex G. Abramson, Ester Caffarel Salvador, Niclas Roxhed, Minsoo Khang, Taylor Bensel, Robert S. Langer, Jorrit Jeroen Water, Morten Revsgaard Frederiksen, Bo Uldall Kristiansen, Mikkel Oliver Jespersen, Mette Poulsen, Peter Herskind, Brian Jensen
  • Publication number: 20200129441
    Abstract: Self-righting articles, such as self-righting capsules for administration to a subject, are generally provided. In some embodiments, the self-righting article may be configured such that the article may orient itself relative to a surface. The self-righting articles described herein may comprise one or more tissue engaging surfaces configured to engage with a surface. In some embodiments, the self-righting article may have a particular shape and/or distribution of density (or mass) which, for example, enables the self-righting behavior of the article. In some embodiments, the self-righting article may comprise a tissue interfacing component and/or a pharmaceutical agent (e.g., for delivery of the active pharmaceutical agent to a location internal of the subject). In some cases, upon contact of the tissue with the tissue engaging surface of the article, the self-righting article may be configured to release one or more tissue interfacing components.
    Type: Application
    Filed: November 21, 2019
    Publication date: April 30, 2020
    Applicants: Massachusetts Intitute of Technology, Novo Nordisk A/S, The Brigham and Women's Hospital, Inc.
    Inventors: Alex G. Abramson, Morten Revsgaard Frederiksen, Brian Jensen, Mikkel Oliver Jespersen, Carlo Giovanni Traverso
  • Patent number: 10610482
    Abstract: Certain embodiments comprise administering a residence structure to a subject (e.g., a patient) such that the residence structure is retained at a location internal to the subject for a particular amount of time (e.g., at least about 24 hours) before being released. In certain embodiments, the structure has a modular design, combining a material configured for controlled release of therapeutic, diagnostic, and/or enhancement agents with a structural material necessary for gastric residence but configured for controlled and/or tunable degradation/dissolution to determine the time at which retention shape integrity is lost and the structure passes out of the gastric cavity. For example, in certain embodiments, the residence structure comprises a first elastic component, a second component configured to release an active substance, and, optionally, a linker. In some such embodiments, the linker may be configured to degrade.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: April 7, 2020
    Assignees: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc., Tokitae LLC
    Inventors: Andrew Bellinger, Shiyi Zhang, Carlo Giovanni Traverso, Robert S. Langer, Stacy Mo, Tyler Grant, Mousa Jafari, Dean Liang Glettig, Angela DiCiccio, Lowell L. Wood, Jr., Philip A. Eckhoff