Patents by Inventor Carlo Valzasina

Carlo Valzasina has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240093995
    Abstract: The present disclosure is directed to a dual-mode control circuit for a microelectromechanical system (MEMS) gyroscope. A control circuit is coupled to a Lissajous frequency modulated (LFM) gyroscope to control amplitude of oscillation of a mass along two directions. The amplitude of oscillation is controlled by an automatic gain control (AGC) loop which allows the same amplitude of oscillation in both directions. An AGC is implemented with a combination of proportional control (P-type) and integral control (I-type) paths that maintain the correct Lissajous pattern of the oscillation of the mass. The AGC may include a dual-mode stage which is able to switch between a P-type control path and an I-type control path based on the operation of the LFM gyroscope. A fast start-up phase may be controlled by the P-type control path while the I-type path is pre-charged to be ready to use in a steady state condition.
    Type: Application
    Filed: September 20, 2022
    Publication date: March 21, 2024
    Inventors: Carlo VALZASINA, Giacomo LANGFELDER, Marco BESTETTI, Andrea Giovanni BONFANTI
  • Patent number: 11865581
    Abstract: An ultrasonic MEMS acoustic transducer formed in a body of semiconductor material having first and second surfaces opposite to one another. A first cavity extends in the body and delimits at the bottom a sensitive portion, which extends between the first cavity and the first surface of the body. The sensitive portion houses a second cavity and forms a membrane that extends between the second cavity and the first surface of the body. An elastic supporting structure extends between the sensitive portion and the body and is suspended over the first cavity.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: January 9, 2024
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Gabriele Gattere, Carlo Valzasina, Federico Vercesi, Giorgio Allegato
  • Publication number: 20240003685
    Abstract: MEMS gyroscope, having a first movable mass configured to move with respect to a fixed structure along a first drive direction and along a first sense direction, transverse to the first drive direction; a first drive assembly, coupled to the first movable mass and configured to generate a first alternate drive movement; a first drive elastic structure, coupled to the first movable mass and to the first drive assembly, rigid in the first drive direction and compliant in the first sense direction; a second movable mass, configured to move with respect to the fixed structure in a second drive direction parallel to the first drive direction and in a second sense direction parallel to the first sense direction; a second drive assembly, coupled to the second movable mass and configured to generate a second alternate drive movement in the second drive direction; and a second drive elastic structure, coupled to the second movable mass and to the second drive assembly, rigid in the second drive direction and compliant
    Type: Application
    Filed: June 21, 2023
    Publication date: January 4, 2024
    Applicant: STMICROELECTRONICS S.r.l.
    Inventors: Luca Giuseppe FALORNI, Patrick FEDELI, Gabriele GATTERE, Carlo VALZASINA, Paola CARULLI
  • Patent number: 11810732
    Abstract: A button device includes a fixed support structure; a movable structure, laterally surrounded by the support structure and configured to deform at least in part under the action of an external force; and a fluid-tight protection cap. The movable structure includes a piston element, deformable elements having piezoelectric transducers arranged thereon, and anchor elements that couple the piston element to the deformable elements. When an external force acts on the piston element, the anchor elements transfer this force to the deformable elements and to the piezoelectric transducers, so as to sense the extent of this force.
    Type: Grant
    Filed: March 9, 2022
    Date of Patent: November 7, 2023
    Assignee: STMICROELECTRONICS S.r.l.
    Inventors: Enri Duqi, Gabriele Gattere, Carlo Valzasina
  • Patent number: 11808574
    Abstract: A multi-axis MEMS gyroscope includes a micromechanical detection structure having a substrate, a driving-mass arrangement, a driven-mass arrangement with a central window, and a sensing-mass arrangement which undergoes sensing movements in the presence of angular velocities about a first horizontal axis and a second horizontal axis. A sensing-electrode arrangement is fixed with respect to the substrate and is set underneath the sensing-mass arrangement. An anchorage assembly is set within the central window for constraining the driven-mass arrangement to the substrate at anchorage elements. The anchorage assembly includes a rigid structure suspended above the substrate that is elastically coupled to the driven mass by elastic connection elements at a central portion, and is coupled to the anchorage elements by elastic decoupling elements at end portions thereof.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: November 7, 2023
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Gabriele Gattere, Carlo Valzasina, Luca Giuseppe Falorni
  • Publication number: 20230296643
    Abstract: A micromechanical device includes a semiconductor body, a first mobile structure, an elastic assembly, coupled to the first mobile structure and to the semiconductor body and adapted to undergo deformation in a direction, and at least one abutment element. The elastic assembly is configured to enable an oscillation of the first mobile structure as a function of a force applied thereto. The first mobile structure, the abutment element and the elastic assembly are arranged with respect to one another in such a way that: when the force is lower than a force threshold, the elastic assembly operates with a first elastic constant; and when the force is greater than the threshold force, then the first mobile structure is in contact with the abutment element, and a deformation of the elastic assembly is generated, which operates with a second elastic constant different from the first elastic constant.
    Type: Application
    Filed: May 23, 2023
    Publication date: September 21, 2023
    Applicant: STMicroelectronics S.r.l.
    Inventors: Jean Marie DARMANIN, Carlo VALZASINA, Alessandro TOCCHIO, Gabriele GATTERE
  • Patent number: 11698388
    Abstract: A micromechanical device includes a semiconductor body, a first mobile structure, an elastic assembly, coupled to the first mobile structure and to the semiconductor body and adapted to undergo deformation in a direction, and at least one abutment element. The elastic assembly is configured to enable an oscillation of the first mobile structure as a function of a force applied thereto. The first mobile structure, the abutment element and the elastic assembly are arranged with respect to one another in such a way that: when the force is lower than a force threshold, the elastic assembly operates with a first elastic constant; and when the force is greater than the threshold force, then the first mobile structure is in contact with the abutment element, and a deformation of the elastic assembly is generated, which operates with a second elastic constant different from the first elastic constant.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: July 11, 2023
    Assignee: STMicroelectronics S.r.l.
    Inventors: Jean Marie Darmanin, Carlo Valzasina, Alessandro Tocchio, Gabriele Gattere
  • Publication number: 20230135941
    Abstract: The present disclosure is directed to a MEMS gyroscope formed by a substrate and a movable mass suspended on the substrate and configured to carry out a movement in a driving direction and in a detection direction perpendicular to each other. The movable mass has a first face and a second face opposite to the first face. The gyroscope also has a first and a second quadrature compensation electrode group, fixed to the substrate and capacitively coupled to the movable mass. The first quadrature compensation electrode group faces the first face of the movable mass, and the second quadrature compensation electrode group faces the second face of the movable mass. The first and the second quadrature compensation electrode groups each have a respective variable facing area on the movable mass as a result of the movement of the movable mass in the driving direction and are configured to exert an electrostatic force on the movable mass during the movement of the movable mass in the driving direction.
    Type: Application
    Filed: October 20, 2022
    Publication date: May 4, 2023
    Applicant: STMICROELECTRONICS S.r.l.
    Inventors: Gabriele GATTERE, Manuel RIANI, Carlo VALZASINA
  • Publication number: 20230028797
    Abstract: A closed-loop microelectromechanical accelerometer includes a substrate of semiconductor material, an out-of-plane sensing mass and feedback electrodes. The out-of-plane sensing mass, of semiconductor material, has a first side facing the supporting body and a second side opposite to the first side. The out-of-plane sensing mass is also connected to the supporting body to oscillate around a non-barycentric fulcrum axis parallel to the first side and to the second side and perpendicular to an out-of-plane sensing axis. The feedback electrodes are capacitively coupled to the sensing mass and are configured to apply opposite electrostatic forces to the sensing mass.
    Type: Application
    Filed: July 15, 2022
    Publication date: January 26, 2023
    Applicant: STMicroelectronics S.r.l.
    Inventors: Gabriele GATTERE, Jean Marie DARMANIN, Francesco RIZZINI, Carlo VALZASINA
  • Publication number: 20220301789
    Abstract: Button device comprising: a fixed support structure; a movable structure, laterally surrounded by said support structure and configured to deform at least in part under the action of an external force; and a fluid-tight protection cap. The movable structure includes a piston element, deformable elements having piezoelectric transducers arranged thereon, and anchor elements that couple the piston element to the deformable elements. When an external force acts on the piston element, the anchor elements transfer this force to the deformable elements and to the piezoelectric transducers, so as to sense the extent of this force.
    Type: Application
    Filed: March 9, 2022
    Publication date: September 22, 2022
    Applicant: STMICROELECTRONICS S.r.l.
    Inventors: Enri DUQI, Gabriele GATTERE, Carlo VALZASINA
  • Patent number: 11408904
    Abstract: The accelerometric sensor has a suspended region, mobile with respect to a supporting structure, and a sensing assembly coupled to the suspended region and configured to detect a movement of the suspended region with respect to the supporting structure. The suspended region has a geometry variable between at least two configurations associated with respective centroids, different from each other. The suspended region is formed by a first region rotatably anchored to the supporting structure and by a second region coupled to the first region through elastic connection elements configured to allow a relative movement of the second region with respect to the first region. A driving assembly is coupled to the second region so as to control the relative movement of the latter with respect to the first region.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: August 9, 2022
    Assignee: STMICROELECTRONICS S.r.l.
    Inventors: Alessandro Tocchio, Francesco Rizzini, Carlo Valzasina, Giacomo Langfelder
  • Publication number: 20220205784
    Abstract: A multi-axis MEMS gyroscope includes a micromechanical detection structure having a substrate, a driving-mass arrangement, a driven-mass arrangement with a central window, and a sensing-mass arrangement which undergoes sensing movements in the presence of angular velocities about a first horizontal axis and a second horizontal axis. A sensing-electrode arrangement is fixed with respect to the substrate and is set underneath the sensing-mass arrangement. An anchorage assembly is set within the central window for constraining the driven-mass arrangement to the substrate at anchorage elements. The anchorage assembly includes a rigid structure suspended above the substrate that is elastically coupled to the driven mass by elastic connection elements at a central portion, and is coupled to the anchorage elements by elastic decoupling elements at end portions thereof.
    Type: Application
    Filed: March 21, 2022
    Publication date: June 30, 2022
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Gabriele Gattere, Carlo Valzasina, Luca Giuseppe Falorni
  • Patent number: 11313681
    Abstract: A multi-axis MEMS gyroscope includes a micromechanical detection structure having a substrate, a driving-mass arrangement, a driven-mass arrangement with a central window, and a sensing-mass arrangement which undergoes sensing movements in the presence of angular velocities about a first horizontal axis and a second horizontal axis. A sensing-electrode arrangement is fixed with respect to the substrate and is set underneath the sensing-mass arrangement. An anchorage assembly is set within the central window for constraining the driven-mass arrangement to the substrate at anchorage elements. The anchorage assembly includes a rigid structure suspended above the substrate that is elastically coupled to the driven mass by elastic connection elements at a central portion, and is coupled to the anchorage elements by elastic decoupling elements at end portions thereof.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: April 26, 2022
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Gabriele Gattere, Carlo Valzasina, Luca Giuseppe Falorni
  • Patent number: 11280611
    Abstract: A microelectromechanical gyroscope includes: a substrate; a stator sensing structure fixed to the substrate; a first mass elastically constrained to the substrate and movable with respect to the substrate in a first direction; a second mass elastically constrained to the first mass and movable with respect to the first mass in a second direction; and a third mass elastically constrained to the second mass and to the substrate and capacitively coupled to the stator sensing structure, the third mass being movable with respect to the substrate in the second direction and with respect to the second mass in the first direction.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: March 22, 2022
    Assignee: STMicroelectronics S.r.l.
    Inventors: Daniele Prati, Carlo Valzasina, Luca Giuseppe Falorni, Matteo Fabio Brunetto
  • Patent number: 11274036
    Abstract: A microelectromechanical device includes: a body accommodating a microelectromechanical structure; and a cap bonded to the body and electrically coupled to the microelectromechanical structure through conductive bonding regions. The cap including a selection module, which has first selection terminals coupled to the microelectromechanical structure, second selection terminals, and at least one control terminal, and which can be controlled through the control terminal to couple the second selection terminals to respective first selection terminals according, selectively, to one of a plurality of coupling configurations corresponding to respective operating conditions.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: March 15, 2022
    Assignee: STMicroelectronics S.r.l.
    Inventors: Giorgio Allegato, Barbara Simoni, Carlo Valzasina, Lorenzo Corso
  • Patent number: 11277112
    Abstract: A microelectromechanical device having a mobile structure including mobile arms formed from a composite material and having a fixed structure including fixed arms capacitively coupled to the mobile arms. The composite material includes core regions of insulating material and a silicon coating.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: March 15, 2022
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Gabriele Gattere, Lorenzo Corso, Alessandro Tocchio, Carlo Valzasina
  • Publication number: 20220041429
    Abstract: A microelectromechanical sensor device has a detection structure including: a substrate having a first surface; a mobile structure having an inertial mass suspended above the substrate at a first area of the first surface so as to perform at least one inertial movement with respect to the substrate; and a fixed structure having fixed electrodes suspended above the substrate at the first area and defining with the mobile structure a capacitive coupling to form at least one sensing capacitor. The device further includes a single monolithic mechanical-anchorage structure positioned at a second area of the first surface separate from the first area and coupled to the mobile structure, the fixed structure, and the substrate and connection elements that couple the mobile structure and the fixed structure mechanically to the single mechanical-anchorage structure.
    Type: Application
    Filed: July 23, 2021
    Publication date: February 10, 2022
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Francesco RIZZINI, Carlo VALZASINA, Gabriele GATTERE
  • Publication number: 20220033254
    Abstract: A MEMS accelerometer includes a supporting structure, at least one deformable group and one second deformable group, which include, respectively, a first deformable cantilever element and a second deformable cantilever element, which each have a respective first end, which is fixed to the supporting structure, and a respective second end. The first and second deformable groups further include, respectively, a first piezoelectric detection structure and a second piezoelectric detection structure. The MEMS accelerometer further includes: a first mobile mass and a second mobile mass, which are fixed, respectively, to the second ends of the first and second deformable cantilever elements and are vertically staggered with respect to the first and second deformable cantilever elements, respectively; and a first elastic structure, which elastically couples the first and second mobile masses.
    Type: Application
    Filed: July 26, 2021
    Publication date: February 3, 2022
    Applicant: STMicroelectronics S.r.l.
    Inventors: Gabriele GATTERE, Patrick FEDELI, Carlo VALZASINA
  • Publication number: 20210363000
    Abstract: A process for manufacturing a MEMS device includes forming a first structural layer of a first thickness on a substrate. First trenches are formed through the first structural layer, and masking regions separated by first openings are formed on the first structural layer. A second structural layer of a second thickness is formed on the first structural layer in direct contact with the first structural layer at the first openings and forms, together with the first structural layer, thick structural regions having a third thickness equal to the sum of the first and the second thicknesses. A plurality of second trenches are formed through the second structural layer, over the masking regions, and third trenches are formed through the first and the second structural layers by removing selective portions of the thick structural regions.
    Type: Application
    Filed: May 14, 2021
    Publication date: November 25, 2021
    Applicant: STMicroelectronics S.r.l.
    Inventors: Giorgio ALLEGATO, Lorenzo CORSO, Ilaria GELMI, Carlo VALZASINA
  • Patent number: 11085769
    Abstract: A gyroscope includes a substrate, a first structure, a second structure and a third structure elastically coupled to the substrate and movable along a first axis. The first and second structure are arranged at opposite sides of the third structure with respect to the first axis A driving system is configured to oscillate the first and second structure along the first axis in phase with one another and in phase opposition with the third structure. The first, second and third structure are provided with respective sets of sensing electrodes, configured to be displaced along a second axis perpendicular to the first axis in response to rotations of the substrate about a third axis perpendicular to the first axis and to the second axis.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: August 10, 2021
    Assignees: STMICROELECTRONICS S.R.L., STMICROELECTRONICS, INC., STMICROELECTRONICS INTERNATIONAL N.V.
    Inventors: Carlo Valzasina, Huantong Zhang, Matteo Fabio Brunetto, Gert Ingvar Andersson, Erik Daniel Svensson, Nils Einar Hedenstierna