Patents by Inventor Carlos M. Villa

Carlos M. Villa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11149117
    Abstract: Alkylene oxide polymerizations are performed in the presence of a double metal cyanide polymerization catalyst and certain magnesium, Group 3-Group 15 metal or lanthanide series metal compounds. The presence of the magnesium, Group 3-Group 15 metal or lanthanide series metal compound provides several benefits including more rapid catalyst activation, faster polymerization rates and the reduction in the amount of ultra high molecular weight polymers that are formed. The catalyst mixture is unexpectedly useful in making polyethers having low equivalent weights.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: October 19, 2021
    Assignee: Dow Global Technologies LLC
    Inventors: David S. Laitar, David A. Babb, Carlos M. Villa, Richard Keaton, Jean-Paul Masy
  • Patent number: 10920013
    Abstract: Alkylene oxides are polymerized in a tubular reactor. The alkylene oxide is continuously introduced into the tubular reactor through multiple introduction points located along the length of the tubular reactor. Monomer flow rates are increased along the length of the reactor to maintain a nearly constant concentration of unreacted alkylene oxide.
    Type: Grant
    Filed: September 17, 2017
    Date of Patent: February 16, 2021
    Assignee: Dow Global Technologies LLC
    Inventors: Nima N. Nikbin, Carlos M. Villa, Maria Jose Nieves Remacha, Irfan Khan, William H. Heath, John G. Pendergast, Jr., Matthias Schaefer, Anna Forlin
  • Patent number: 10767009
    Abstract: Polyether polyols are made by a process that includes a continuous addition of starter and alkylene oxide. The feed of starter is discontinued when 80 to 95% of the alkylene oxide has been fed to the reactor. This process produces a product with a narrow molecular weight distribution.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: September 8, 2020
    Assignee: Covestro LLC
    Inventors: Jean-Paul Masy, Carlos M. Villa, David A. Babb, John W. Weston, Sweta Somasi
  • Publication number: 20190211149
    Abstract: Alkylene oxide polymerizations are performed in the presence of a double metal cyanide polymerization catalyst and certain magnesium, Group 3-Group 15 metal or lanthanide series metal compounds. The presence of the magnesium, Group 3-Group 15 metal or lanthanide series metal compound provides several benefits including more rapid catalyst activation, faster polymerization rates and the reduction in the amount of ultra high molecular weight polymers that are formed. The catalyst mixture is unexpectedly useful in making polyethers having low equivalent weights.
    Type: Application
    Filed: March 14, 2019
    Publication date: July 11, 2019
    Inventors: David S. Laitar, David A. Babb, Carlos M. Villa, Richard Keaton, Jean-Paul Masy
  • Publication number: 20190202983
    Abstract: Alkylene oxides are polymerized in a tubular reactor. The alkylene oxide is continuously introduced into the tubular reactor through multiple introduction points located along the length of the tubular reactor. Monomer flow rates are increased along the length of the reactor to maintain a nearly constant concentration of unreacted alkylene oxide.
    Type: Application
    Filed: September 17, 2017
    Publication date: July 4, 2019
    Inventors: Nima N. Nikbin, Carlos M. Villa, Maria Jose Nieves Remacha, Irfan Khan, William H. Heath, John G. Pendergast, Jr., Matthias Schaefer, Anna Forlin
  • Patent number: 10233284
    Abstract: Alkylene oxide polymerizations are performed in the presence of a double metal cyanide polymerization catalyst and certain magnesium, Group 3-Group 15 metal or lanthanide series metal compounds. The presence of the magnesium, Group 3-Group 15 metal or lanthanide series metal compound provides several benefits including more rapid catalyst activation, faster polymerization rates and the reduction in the amount of ultra high molecular weight polymers that are formed. The catalyst mixture is unexpectedly useful in making polyethers having low equivalent weights.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: March 19, 2019
    Assignee: Dow Global Technologies LLC
    Inventors: David S. Laitar, David A. Babb, Carlos M. Villa, Richard Keaton, Jean-Paul Masy
  • Publication number: 20180237587
    Abstract: Polyether polyols are made by a process that includes a continuous addition of starter and alkylene oxide. The feed of starter is discontinued when 80 to 95% of the alkylene oxide has been fed to the reactor. This process produces a product with a narrow molecular weight distribution.
    Type: Application
    Filed: June 20, 2016
    Publication date: August 23, 2018
    Inventors: Jean-Paul Masy, Carlos M. Villa, David A. Babb, John W. Weston, Sweta Somasi
  • Patent number: 9758619
    Abstract: Ethylene carbonate is polymerized by itself or together with another cyclic monomer such as 1,2-propylene oxide in the presence of a double metal cyanide catalyst. Most of the ethylene carbonate adds to the chain to form a terminal carbonate group, which decarboxylates to produce a hydroxyethyl group at the end of the polymer chain. The polymerization of more ethylene carbonate onto the chain end results in the formation of poly(ethyleneoxy) units. Therefore, the process provides a method for making poly(ethyleneoxy) polymers without the need to polymerize ethylene oxide. The process is useful for making polyethers that are useful as water-absorbable polymers, surfactants and as raw materials for polyurethanes. The process is also useful for increasing the primary hydroxyl content of a polyether.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: September 12, 2017
    Assignee: Dow Global Technologies LLC
    Inventors: Esther E. Quintanilla, Hanno R. Van Der Wal, Daniel C. Floyd, Myriam Linke, Francois M. Casati, Carlos M. Villa, Jean-Paul Masy, Ricco B. Borella, Paul Cookson
  • Patent number: 9725559
    Abstract: Copolymers of propylene oxide and ethylene oxide have an inner block that contains from 65-90 weight percent oxyethylene units and from 10 to 35 weight percent oxypropylene units. This block has a molecular weight of from 150 to 350. The copolymer has an outer block which contains at least 95 weight % oxypropylene units and from 0 to 5% oxyethylene units. The equivalent weight of the copolymer is from 800 to 2000. The copolymers are useful in making polyurethane foams that have unexpectedly high tensile and/or tear strengths.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: August 8, 2017
    Assignee: Dow Global Technologies LLC
    Inventors: Carlos M. Villa, Jean-Paul Masy, Ricco B. Borella, David A. Babb, Flor A. Castillo
  • Patent number: 9637593
    Abstract: Organic materials are stripped and dried in a single column having two contact zones. A stripping gas is introduced into an upper contact zone and flows through the organic material in that zone. A drying gas is introduced into a lower contact zone. The drying gas contacts the organic material in both the upper and lower contact zones, and is removed from the top of the column together with the stripping gas. This process permits very efficiently removal of volatile organic compounds as well as efficient drying, while requiring on low levels of the stripping and drying gasses.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: May 2, 2017
    Assignee: Dow Global Technologies LLC
    Inventors: Kevin C. Seavey, Walter C. Moore, John W. Weston, Carlos M. Villa
  • Publication number: 20170101506
    Abstract: Alkylene oxide polymerizations are performed in the presence of a double metal cyanide polymerization catalyst and certain magnesium, Group 3-Group 15 metal or lanthanide series metal compounds. The presence of the magnesium, Group 3-Group 15 metal or lanthanide series metal compound provides several benefits including more rapid catalyst activation, faster polymerization rates and the reduction in the amount of ultra high molecular weight polymers that are formed. The catalyst mixture is unexpectedly useful in making polyethers having low equivalent weights.
    Type: Application
    Filed: December 16, 2016
    Publication date: April 13, 2017
    Inventors: David S. Laitar, David A. Babb, Carlos M. Villa, Richard Keaton, Jean-Paul Masy
  • Patent number: 9556309
    Abstract: Alkylene oxide polymerizations are performed in the presence of a double metal cyanide polymerization catalyst and certain magnesium, Group 3-Group 15 metal or lanthanide series metal compounds. The presence of the magnesium, Group 3-Group 15 metal or lanthanide series metal compound provides several benefits including more rapid catalyst activation, faster polymerization rates and the reduction in the amount of ultra high molecular weight polymers that are formed. The catalyst mixture is unexpectedly useful in making polyethers having low equivalent weights.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: January 31, 2017
    Assignee: Dow Global Technologies LLC
    Inventors: David S. Laitar, David A. Babb, Carlos M. Villa, Richard Keaton, Jean-Paul Masy
  • Publication number: 20160159978
    Abstract: Organic materials are stripped and dried in a single column having two contact zones. A stripping gas is introduced into an upper contact zone and flows through the organic material in that zone. A drying gas is introduced into a lower contact zone. The drying gas contacts the organic material in both the upper and lower contact zones, and is removed from the top of the column together with the stripping gas. This process permits very efficiently removal of volatile organic compounds as well as efficient drying, while requiring on low levels of the stripping and drying gasses.
    Type: Application
    Filed: February 17, 2016
    Publication date: June 9, 2016
    Inventors: Kevin C. Seavey, Walter C. Moore, John W. Weston, Carlos M. Villa
  • Publication number: 20150376332
    Abstract: Copolymers of propylene oxide and ethylene oxide have an inner block that contains from 65-90 weight percent oxyethylene units and from 10 to 35 weight percent oxypropylene units. This block has a molecular weight of from 150 to 350. The copolymer has an outer block which contains at least 95 weight % oxypropylene units and from 0 to 5% oxyethylene units. The equivalent weight of the copolymer is from 800 to 2000. The copolymers are useful in making polyurethane foams that have unexpectedly high tensile and/or tear strengths.
    Type: Application
    Filed: September 9, 2015
    Publication date: December 31, 2015
    Inventors: Carlos M. Villa, Jean-Paul Masy, Ricco B. Borella, David A. Babb, Flor A. Castillo
  • Patent number: 9156936
    Abstract: Copolymers of propylene oxide and ethylene oxide have an inner block that contains from 65-90 weight percent oxyethylene units and from 10 to 35 weight percent oxypropylene units. This block has a molecular weight of from 150 to 350. The copolymer has an outer block which contains at least 95 weight % oxypropylene units and from 0 to 5% oxyethylene units. The equivalent weight of the copolymer is from 800 to 2000. The copolymers are useful in making polyurethane foams that have unexpectedly high tensile and/or tear strengths.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: October 13, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Carlos M Villa, Jean-Paul Masy, Ricco B. Borella, David A. Babb, Flor A. Castillo
  • Publication number: 20150225504
    Abstract: Alkylene oxide polymerizations are performed in the presence of a double metal cyanide polymerization catalyst and certain magnesium, Group 3-Group 15 metal or lanthanide series metal compounds. The presence of the magnesium, Group 3-Group 15 metal or lanthanide series metal compound provides several benefits including more rapid catalyst activation, faster polymerization rates and the reduction in the amount of ultra high molecular weight polymers that are formed. The catalyst mixture is unexpectedly useful in making polyethers having low equivalent weights.
    Type: Application
    Filed: April 23, 2015
    Publication date: August 13, 2015
    Inventors: David S. Laitar, David A. Babb, Carlos M. Villa, Richard Keaton, Jean-Paul Masy
  • Patent number: 9074044
    Abstract: Polyether polyols having equivalent weights of up to 500 are continuously prepared in the presence of a double metal cyanide catalyst. A first step of the reaction is performed at a temperature of at least 150° C., while controlling the hydroxyl content and unreacted alkylene oxide content of the reaction mixture to within certain ranges. A portion of that reaction mixture is withdrawn and permitted to react non-isothermally to consume the unreacted alkylene oxide. This process is highly efficient, does not result in catalyst deactivation, as is commonly seen in previous processes, and does not produce a significant ultra high molecular weight tail.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: July 7, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: John W. Weston, Carlos M. Villa, Jean-Paul Masy, Kevin C. Seavey
  • Patent number: 9040657
    Abstract: Alkylene oxide polymerizations are performed in the presence of a double metal cyanide polymerization catalyst and certain magnesium, Group 3-Group 15 metal or lanthanide series metal compounds. The presence of the magnesium, Group 3-Group 15 metal or lanthanide series metal compound provides several benefits including more rapid catalyst activation, faster polymerization rates and the reduction in the amount of ultra high molecular weight polymers that are formed. The catalyst mixture is unexpectedly useful in making polyethers having low equivalent weights.
    Type: Grant
    Filed: December 18, 2011
    Date of Patent: May 26, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: David S. Laitar, David A. Babb, Carlos M. Villa, Richard Keaton, Jean-Paul Masy
  • Patent number: 8912364
    Abstract: The present disclosure relates, according to some embodiments, to compositions, apparatus, methods, and systems that may be used to produce polyols, for example, polyether polyols with a narrow range of molecular weights, with little if any unsaturated byproducts, in a sustained and/or continuous reaction, with efficient heat transfer, and/or at high production rates. For example, in some embodiments, teachings of the disclosure may be used to produce polyether polyols in a continuous loop flow process. A continuous loop flow process may be practiced such that heat is effectively transferred and/or product properties (e.g., range of molecular weights) are controllable. For example, a continuous loop flow process may use one or more continuous flow loops comprising a heat exchanger, a means to move material around each loop, inlets for catalyst, monomer, initiator or starter, and an outlet for polyol product.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: December 16, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Carlos M. Villa, John W. Weston, Pradeep Jain, Leigh H. Thompson, Jean-Paul Masy
  • Publication number: 20140163197
    Abstract: Ethylene carbonate is polymerized by itself or together with another cyclic monomer such as 1,2-propylene oxide in the presence of a double metal cyanide catalyst. Most of the ethylene carbonate adds to the chain to form a terminal carbonate group, which decarboxylates to produce a hydroxyethyl group at the end of the polymer chain. The polymerization of more ethylene carbonate onto the chain end results in the formation of poly(ethyleneoxy) units. Therefore, the process provides a method for making poly(ethyleneoxy) polymers without the need to polymerize ethylene oxide. The process is useful for making polyethers that are useful as water-absorbable polymers, surfactants and as raw materials for polyurethanes. The process is also useful for increasing the primary hydroxyl content of a polyether.
    Type: Application
    Filed: August 15, 2012
    Publication date: June 12, 2014
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Esther E. Quintanilla, Hanno R. Van Der Wal, Daniel C. Floyd, Myriam Linke, Francois M. Casati, Carlos M. Villa, Jean-Paul Masy, Ricco B. Borella, Paul Cookson