Patents by Inventor Carsten Prinz

Carsten Prinz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11881300
    Abstract: The present disclosure relates to an imaging system for creating an image of an examination object comprising a system component and a control component. The system component has a component property that is able to assume a value in a first value range established by the imaging system. A corresponding system component of another imaging system comprises a corresponding component property with another value range with an overlap range with the first value range. The control component is embodied to control the use of the system component on the creation of the image, wherein the control component can be operated in a compatibility mode. In the compatibility mode, the control component is configured, on the creation of the image, to only allow values that lie within the overlap range for the component property of the system component.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: January 23, 2024
    Assignee: Siemens Healthcare GmbH
    Inventors: Thorsten Feiweier, Carsten Prinz, Michael Schneider, Michael Zenge
  • Patent number: 11707250
    Abstract: The disclosure relates to a method for operating a medical device, (e.g., an imaging apparatus such as an X-ray device or magnetic resonance tomography unit), and a fault monitoring apparatus for carrying out the method. The fault monitoring apparatus is connected to the medical device via a signal connection. In the method, the fault monitoring apparatus receives an item of status information from the medical device and stores the item of status information in a system state. Further, the fault monitoring apparatus compares the stored system state with a predetermined target state, and, depending on the comparison, releases a function of the medical device, wherein the predetermined target state has a successfully executed function test.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: July 25, 2023
    Assignee: Siemens Healthcare GmbH
    Inventors: Swen Campagna, Thorsten Speckner, Wolfgang Gösswein, Carsten Prinz, Stephan Churt, Bernd Erbe
  • Patent number: 11523747
    Abstract: A method for operating a medical diagnostic system that is configured to use a system component of the diagnostic system to generate examination data of a person under examination during an examination procedure is provided. The examination procedure with control of the system component is controlled by a piece of control software, and a component driver exchanges control commands of the control software with the system component in order to control the system component. The method includes providing an event driver that communicates with the control software via an interface of the control software. Via the event driver, a first event is detected in the examination procedure and reported to the event driver. When the first event is detected in the examination procedure, the use of the system component in the examination procedure is modified to a first type defined by the event driver.
    Type: Grant
    Filed: January 2, 2020
    Date of Patent: December 13, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Simon Bauer, Thorsten Feiweier, Christian Köglmeier, Carsten Prinz, Daniel Nicolas Splitthoff, Michael Zenge, Michael Schneider
  • Publication number: 20220160324
    Abstract: The disclosure relates to a method for operating a medical device, (e.g., an imaging apparatus such as an X-ray device or magnetic resonance tomography unit), and a fault monitoring apparatus for carrying out the method. The fault monitoring apparatus is connected to the medical device via a signal connection. In the method, the fault monitoring apparatus receives an item of status information from the medical device and stores the item of status information in a system state. Further, the fault monitoring apparatus compares the stored system state with a predetermined target state, and, depending on the comparison, releases a function of the medical device, wherein the predetermined target state has a successfully executed function test.
    Type: Application
    Filed: October 27, 2021
    Publication date: May 26, 2022
    Inventors: Swen Campagna, Thorsten Speckner, Wolfgang Gösswein, Carsten Prinz, Stephan Churt, Bernd Erbe
  • Patent number: 10928466
    Abstract: In a magnetic resonance apparatus and a method for operation thereof, at least one electrical operating value of at least one predetermined component of the apparatus is captured and, as a function of the at least one operating value, at least one coil operating value of a transmitting coil arrangement of the magnetic resonance apparatus is controlled for the purpose of limiting a B1 value.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: February 23, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Wolfgang Bielmeier, Gerhard Brinker, Swen Campagna, Bernd Erbe, Matthias Gebhardt, Juergen Nistler, Dominik Paul, Carsten Prinz, Gudrun Ruyters, Stephan Stoecker, Markus Vester
  • Patent number: 10788560
    Abstract: A method for verifying at least one default value for a magnetic resonance examination, a verifying unit, a magnetic resonance device and a computer program product are provided. According to the method, at least one default value for an electromagnetic property and a sequence segment are sent to a verifying unit. The verifying unit uses the sequence segment to determine at least one electromagnetic property. The at least one default value is verified by the verifying unit with respect to the at least one electromagnetic property.
    Type: Grant
    Filed: February 11, 2017
    Date of Patent: September 29, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Carsten Prinz, Volker Schnetter
  • Publication number: 20200214590
    Abstract: A method for operating a medical diagnostic system that is configured to use a system component of the diagnostic system to generate examination data of a person under examination during an examination procedure is provided. The examination procedure with control of the system component is controlled by a piece of control software, and a component driver exchanges control commands of the control software with the system component in order to control the system component. The method includes providing an event driver that communicates with the control software via an interface of the control software. Via the event driver, a first event is detected in the examination procedure and reported to the event driver. When the first event is detected in the examination procedure, the use of the system component in the examination procedure is modified to a first type defined by the event driver.
    Type: Application
    Filed: January 2, 2020
    Publication date: July 9, 2020
    Inventors: Simon Bauer, Thorsten Feiweier, Christian Köglmeier, Carsten Prinz, Daniel Nicolas Splitthoff, Michael Zenge, Michael Schneider
  • Patent number: 10663538
    Abstract: A method for monitoring a temporal change in a magnetic field in a magnetic resonance device, as well as an evaluation unit, a magnetic resonance device, and a computer program product for performing the method are provided. The method provides that a position-dependent magnetic field distribution that is produced by the plurality of gradient coils is provided with a plurality of monitoring points. In addition, time-dependent gradient values of the plurality of gradient coils are ascertained. Based on position-dependent magnetic field distribution and the time-dependent gradient values, the temporal change in the magnetic field is ascertained. The temporal change in the magnetic field is monitored by comparing the temporal change in the magnetic field with at least one limit value.
    Type: Grant
    Filed: September 9, 2017
    Date of Patent: May 26, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Wolfgang Bielmeier, Gerhard Brinker, Swen Campagna, Nikolaus Demharter, Bernd Erbe, Matthias Gebhardt, Helmut Lenz, Jürgen Nistler, Dominik Paul, Carsten Prinz, Gudrun Ruyters, Stephan Stöcker, Markus Vester
  • Publication number: 20200143935
    Abstract: The present disclosure relates to an imaging system for creating an image of an examination object comprising a system component and a control component. The system component has a component property that is able to assume a value in a first value range established by the imaging system. A corresponding system component of another imaging system comprises a corresponding component property with another value range with an overlap range with the first value range. The control component is embodied to control the use of the system component on the creation of the image, wherein the control component can be operated in a compatibility mode. In the compatibility mode, the control component is configured, on the creation of the image, to only allow values that lie within the overlap range for the component property of the system component.
    Type: Application
    Filed: November 7, 2019
    Publication date: May 7, 2020
    Applicant: Siemens Healthcare GmbH
    Inventors: Thorsten Feiweier, Carsten Prinz, Michael Schneider, Michael Zenge
  • Patent number: 10288710
    Abstract: In a magnetic resonance (MR) apparatus and an operating method therefor, a sequence with which the MR data are to be recorded is created in or provided to a control computer of the MR apparatus. A maximum RF output and a maximum gradient performance of the scanner magnetic resonance apparatus during the performance of the sequence are determined by simulating or analyzing the performance of the sequence in the control computer, and it is verified whether the maximum RF output and/or the maximum gradient performance violate predetermined limit values. Execution of the sequence to record the MR data is performed only if the verification showed that the limit values are not violated.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: May 14, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Wolfgang Bielmeier, Gerhard Brinker, Swen Campagna, Nikolaus Demharter, Bernd Erbe, Matthias Gebhardt, Juergen Nistler, Dominik Paul, Carsten Prinz, Gudrun Ruyters, Stephan Stoecker, Markus Vester
  • Patent number: 10275875
    Abstract: A method for automatically and dynamically optimizing image acquisition parameters/commands of an imaging procedure performed by a medical imaging apparatus in order to mitigate or cancel dynamic effects perturbing the image acquisition process of an object to be imaged by the medical imaging apparatus. The method includes connecting a dynamic correction module (DCM) to the medical imaging apparatus, automatically acquiring by the DCM image acquisition parameters/commands and data about dynamic changes or effects, and automatically determining in real time, by the DCM, at least one new image acquisition parameter/command from the image acquisition parameters/commands defined in the imaging control system and the dynamic change data, while the image acquisition parameter/command defined in the imaging control system remains unchanged. The method further includes automatically providing, by the DCM, the new image acquisition parameter/command to the hardware control system.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: April 30, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Himanshu Bhat, Thorsten Feiweier, Tobias Kober, Carsten Prinz, Daniel Nico Splitthoff, Stephan Stoecker
  • Patent number: 10101415
    Abstract: A method for operating a magnetic resonance apparatus by a safety unit, taking into account persons fitted with an implant, a safety unit, a safety system, a magnetic resonance apparatus, and a computer program product are provided. The magnetic resonance apparatus includes a first part and a second part. The first part is operated separately from the second part and includes the safety unit. During an examination of a person fitted with an implant, the safety unit checks that the magnetic resonance apparatus, in a restricted operating mode, is complying with implant-conformant limit values.
    Type: Grant
    Filed: April 15, 2017
    Date of Patent: October 16, 2018
    Assignee: Siemens Healthcare GmbH
    Inventors: Wolfgang Bielmeier, Gerhard Brinker, Nikolaus Demharter, Bernd Erbe, Matthias Gebhardt, Jürgen Nistler, Dominik Paul, Carsten Prinz, Gudrun Ruyters, Stephan Stöcker, Markus Vester, Swen Campagna
  • Publication number: 20180074138
    Abstract: A method for monitoring a temporal change in a magnetic field in a magnetic resonance device, as well as an evaluation unit, a magnetic resonance device, and a computer program product for performing the method are provided. The method provides that a position-dependent magnetic field distribution that is produced by the plurality of gradient coils is provided with a plurality of monitoring points. In addition, time-dependent gradient values of the plurality of gradient coils are ascertained. Based on position-dependent magnetic field distribution and the time-dependent gradient values, the temporal change in the magnetic field is ascertained. The temporal change in the magnetic field is monitored by comparing the temporal change in the magnetic field with at least one limit value.
    Type: Application
    Filed: September 9, 2017
    Publication date: March 15, 2018
    Inventors: Wolfgang Bielmeier, Gerhard Brinker, Swen Campagna, Nikolaus Demharter, Bernd Erbe, Matthias Gebhardt, Helmut Lenz, Jürgen Nistler, Dominik Paul, Carsten Prinz, Gudrun Ruyters, Stephan Stöcker, Markus Vester
  • Patent number: 9835706
    Abstract: In a method and apparatus to acquire magnetic resonance image data; an examination subject is positioned in a magnetic resonance apparatus to acquire magnetic resonance image data of the examination subject with a magnetic resonance sequence, and sequence parameters of the magnetic resonance sequence are established. First control commands of the magnetic resonance sequence are generated using the established sequence parameters. The first control commands are optimized so as to generate an optimized magnetic resonance sequence, the optimization of the first control commands including a conversion of the first control commands into optimized control commands. A test to review the optimized magnetic resonance sequence is implemented, the test including a comparison of the first control commands with the optimized control commands. The optimized magnetic resonance sequence is executed to acquire the magnetic resonance image data with the optimized control commands depending on the result of the test.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: December 5, 2017
    Assignee: Siemens Aktiengesellschaft
    Inventors: David Grodzki, Carsten Prinz
  • Publication number: 20170328966
    Abstract: In a magnetic resonance apparatus and a method for operation thereof, at least one electrical operating value of at least one predetermined component of the apparatus is captured and, as a function of the at least one operating value, at least one coil operating value of a transmitting coil arrangement of the magnetic resonance apparatus is controlled for the purpose of limiting a B1 value.
    Type: Application
    Filed: May 10, 2017
    Publication date: November 16, 2017
    Applicant: Siemens Healthcare GmbH
    Inventors: Wolfgang Bielmeier, Gerhard Brinker, Swen Campagna, Bernd Erbe, Matthias Gebhardt, Juergen Nistler, Dominik Paul, Carsten Prinz, Gudrun Ruyters, Stephan Stoecker, Markus Vester
  • Publication number: 20170315195
    Abstract: In a magnetic resonance (MR) apparatus and an operating method therefor, a sequence with which the MR data are to be recorded is created in or provided to a control computer of the MR apparatus. A maximum RF output and a maximum gradient performance of the scanner magnetic resonance apparatus during the performance of the sequence are determined by simulating or analyzing the performance of the sequence in the control computer, and it is verified whether the maximum RF output and/or the maximum gradient performance violate predetermined limit values. Execution of the sequence to record the MR data is performed only if the verification showed that the limit values are not violated.
    Type: Application
    Filed: April 27, 2017
    Publication date: November 2, 2017
    Applicant: Siemens Healthcare GmbH
    Inventors: Wolfgang Bielmeier, Gerhard Brinker, Swen Campagna, Nikolaus Demharter, Bernd Erbe, Matthias Gebhardt, Juergen Nistler, Dominik Paul, Carsten Prinz, Gudrun Ruyters, Stephan Stoecker, Markus Vester
  • Publication number: 20170299667
    Abstract: A method for operating a magnetic resonance apparatus by a safety unit, taking into account persons fitted with an implant, a safety unit, a safety system, a magnetic resonance apparatus, and a computer program product are provided. The magnetic resonance apparatus includes a first part and a second part. The first part is operated separately from the second part and includes the safety unit. During an examination of a person fitted with an implant, the safety unit checks that the magnetic resonance apparatus, in a restricted operating mode, is complying with implant-conformant limit values.
    Type: Application
    Filed: April 15, 2017
    Publication date: October 19, 2017
    Inventors: Wolfgang Bielmeier, Gerhard Brinker, Nikolaus Demharter, Bernd Erbe, Matthias Gebhardt, Jürgen Nistler, Dominik Paul, Carsten Prinz, Gudrun Ruyters, Stephan Stöcker, Markus Vester, Swen Campagna
  • Publication number: 20170234958
    Abstract: A method for verifying at least one default value for a magnetic resonance examination, a verifying unit, a magnetic resonance device and a computer program product are provided. According to the method, at least one default value for an electromagnetic property and a sequence segment are sent to a verifying unit. The verifying unit uses the sequence segment to determine at least one electromagnetic property. The at least one default value is verified by the verifying unit with respect to the at least one electromagnetic property.
    Type: Application
    Filed: February 11, 2017
    Publication date: August 17, 2017
    Inventors: Carsten Prinz, Volker Schnetter
  • Publication number: 20160300353
    Abstract: A method for automatically and dynamically optimizing image acquisition parameters/commands of an imaging procedure performed by a medical imaging apparatus in order to mitigate or cancel dynamic effects perturbing the image acquisition process of an object to be imaged by the medical imaging apparatus. The method includes connecting a dynamic correction module (DCM) to the medical imaging apparatus, automatically acquiring by the DCM image acquisition parameters/commands and data about dynamic changes or effects, and automatically determining in real time, by the DCM, at least one new image acquisition parameter/command from the image acquisition parameters/commands defined in the imaging control system and the dynamic change data, while the image acquisition parameter/command defined in the imaging control system remains unchanged. The method further includes automatically providing, by the DCM, the new image acquisition parameter/command to the hardware control system.
    Type: Application
    Filed: April 7, 2016
    Publication date: October 13, 2016
    Inventors: HIMANSHU BHAT, THORSTEN FEIWEIER, TOBIAS KOBER, CARSTEN PRINZ, DANIEL NICO SPLITTHOFF, STEPHAN STOECKER
  • Publication number: 20150097562
    Abstract: In a method and apparatus to acquire magnetic resonance image data; an examination subject is positioned in a magnetic resonance apparatus to acquire magnetic resonance image data of the examination subject with a magnetic resonance sequence, and sequence parameters of the magnetic resonance sequence are established. First control commands of the magnetic resonance sequence are generated using the established sequence parameters. The first control commands are optimized so as to generate an optimized magnetic resonance sequence, the optimization of the first control commands including a conversion of the first control commands into optimized control commands. A test to review the optimized magnetic resonance sequence is implemented, the test including a comparison of the first control commands with the optimized control commands. The optimized magnetic resonance sequence is executed to acquire the magnetic resonance image data with the optimized control commands depending on the result of the test.
    Type: Application
    Filed: October 8, 2014
    Publication date: April 9, 2015
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: David Grodzki, Carsten Prinz