Patents by Inventor Catherine A. Leatherdale

Catherine A. Leatherdale has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110108858
    Abstract: Light emitting systems are disclosed. The light emitting system emits an output light that has a first color. The light emitting system includes a first electroluminescent device that emits light at a first wavelength in response to a first signal. The first wavelength is substantially independent of the first signal. The intensity of the emitted first wavelength light is substantially proportional to the first signal. The light emitting system further includes a first luminescent element that includes a second electroluminescent device and a first light converting layer. The second electroluminescent device emits light at a second wavelength in response to a second signal. The first light converting layer includes a semiconductor potential well and converts at least a portion of light at the second wavelength to light at a third wavelength that is longer than the second wavelength.
    Type: Application
    Filed: July 14, 2009
    Publication date: May 12, 2011
    Inventors: Michael A. Haase, James A. Thielen, Catherine A. Leatherdale, Billy L. Weaver, Terry L. Smith
  • Patent number: 7902542
    Abstract: An article includes an LED that has an emitting surface. A reemitting semiconductor structure has an emitting surface and converts light emitted by the LED to light of a different wavelength. At least one of the emitting surfaces frustrates total internal reflection.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: March 8, 2011
    Assignee: 3M Innovative Properties Company
    Inventors: Michael A. Haase, Catherine A. Leatherdale, Thomas J. Miller, Andrew J. Ouderkirk
  • Patent number: 7893410
    Abstract: A method including providing a substrate having thereon a layer including a multiphoton polymerizable composition, applying a light beam to at least one region of the layer, wherein the light beam cures or initiates cure of the multiphoton curable photoreactive composition; and processing a portion of the light beam reflected off the substrate to obtain a location signal of an interface between the layer and the substrate at each region.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: February 22, 2011
    Assignee: 3M Innovative Properties Company
    Inventors: Craig R. Sykora, Steven C. Reed, Serge Wetzels, Catherine A. Leatherdale, Matthew R. C. Atkinson
  • Publication number: 20100295075
    Abstract: A wavelength converted light emitting diode (LED) device has an LED having an output surface. A multilayer semiconductor wavelength converter is optically bonded to the LED. At least one of the LED and the wavelength converter is provided with light extraction features.
    Type: Application
    Filed: November 7, 2008
    Publication date: November 25, 2010
    Inventors: Terry L. Smith, Tommie W. Kelley, Michael A. Haase, Catherine A. Leatherdale
  • Publication number: 20100295057
    Abstract: An arrangement of light sources is attached to a semiconductor wavelength converter. Each light source emits light at a respective peak wavelength, and the arrangement of light sources is characterized by a first range of peak wavelengths. The semiconductor wavelength converter is characterized by a second range of peak wavelengths when pumped by the arrangement of light sources. The second range of peak wavelengths is narrower than the first range of peak wavelengths. The semiconductor wavelength converter is characterized by an absorption edge having a wavelength longer than the longest peak wavelength of the light sources. The wavelength converter may also be used for reducing the wavelength variation in the output from an extended light source.
    Type: Application
    Filed: December 9, 2008
    Publication date: November 25, 2010
    Inventors: Xiaoguang Sun, Michael A. Haase, Thomas J. Miller, Terry L Smith, Tommie W. Kelley, Catherine A. Leatherdale
  • Publication number: 20100283074
    Abstract: A light emitting diode (LED) has various LED layers provided on a substrate. A multilayer semiconductor wavelength converter, capable of converting the wavelength of light generated in the LED to light at a longer wavelength, is attached to the upper surface of the LED by a bonding layer. One or more textured surfaces within the LED are used to enhance the efficiency at which light is transported from the LED to the wavelength converter. In some embodiments, one or more surfaces of the wavelength converter is provided with a textured surface to enhance the extraction efficiency of the long wavelength light generated within the converter.
    Type: Application
    Filed: September 9, 2008
    Publication date: November 11, 2010
    Inventors: Tommie W. Kelley, Michael A. Haase, Catherine A. Leatherdale, Terry L. Smith
  • Patent number: 7790353
    Abstract: A method for enhancing photoreactive absorption in a specified volume element of a photoreactive composition. In one embodiment, the method includes: providing a photoreactive composition: providing a source of light (preferably, a pulsed laser) sufficient for simultaneous absorption of at least two photons by the photoreactive composition, the light source having a beam capable of being divided: dividing the light beam into a plurality of equal path length exposure beams: and focusing the exposure beams in a substantially non-counter propagating manner at a single volume element of the photoreactive composition simultaneously to react at least a portion of the photoreactive composition.
    Type: Grant
    Filed: June 14, 2001
    Date of Patent: September 7, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: Patrick R. Fleming, Robert J. DeVoe, Catherine A. Leatherdale, Todd A. Ballen, Jeffrey M. Florczak
  • Patent number: 7790347
    Abstract: A three-dimensional shaped structure is prepared from a multi-photon reactive composition including: (a) at least one reactive species; (b) a multi-photon photoinitiator system; and (c) a plurality of substantially inorganic particles, wherein the particles have an average particle size of less than about 10 microns in diameter.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: September 7, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: Catherine A. Leatherdale, Craig R. Schardt, D. Scott Thompson, Wendy L. Thompson
  • Publication number: 20100133574
    Abstract: A light emitting device that includes a light emitting diode and a multilayer encapsulant is disclosed. The multilayer encapsulant includes a first encapsulant in contact with the light emitting diode and a photopolymerizable composition in contact with the first encapsulant. The first encapsulant may be a silicone gel, silicone gum, silicone fluid, organosiloxane, polysiloxane, polyimide, polyphosphazene, sol-gel composition, or another photopolymerizable composition. The photopolymerizable compositions include a silicon-containing resin and a metal-containing catalyst, the silicon-containing resin comprising silicon-bonded hydrogen and aliphatic unsaturation. Actinic radiation having a wavelength of 700 nm or less can be applied to initiate hydrosilylation within the silicon-containing resins.
    Type: Application
    Filed: February 2, 2010
    Publication date: June 3, 2010
    Inventors: D. Scott Thompson, Larry D. Boardman, Catherine A. Leatherdale
  • Publication number: 20100051970
    Abstract: A light emitting article is disclosed and includes a light emitting diode having an n-layer or p-layer with a first refractive index value. A planarizing layer having a refractive index value equal to or greater than the first refractive index value is disposed on the n-layer or p-layer, and a patterned electrode is disposed on the n-layer or p-layer. An extractor having a light input surface is optically coupled to the planarizing layer.
    Type: Application
    Filed: November 15, 2007
    Publication date: March 4, 2010
    Inventors: Andrew J. Ouderkirk, Catherine A. Leatherdale
  • Publication number: 20100051971
    Abstract: A light emitting article (100) is disclosed and includes a light emitting diode (110) having a p-n junction, a light emitting surface (111), and a patterned electrode (130). An extractor (140) having a light input surface (141) is optically coupled to the light emitting surface forming a light emitting interface (145). The electrode is at least partially formed within the light emitting surface and between the p-n junction and the extractor.
    Type: Application
    Filed: November 15, 2007
    Publication date: March 4, 2010
    Inventors: Andrew J. Ouderkirk, Catherine A. Leatherdale
  • Publication number: 20100027956
    Abstract: Methods of fabricating optical elements that are encapsulated in monolithic matrices. The present invention is based, at least in one aspect, upon the concept of using multiphoton, multi-step photocuring to fabricate encapsulated optical element(s) within a body of a photopolymerizable composition. Imagewise, multiphoton polymerization techniques are used to form the optical element. The body surrounding the optical element is also photohardened by blanket irradiation and/or thermal curing to help form an encapsulating structure. In addition, the composition also incorporates one or more other, non-diffusing binder components that may be thermosetting or thermoplastic. The end result is an encapsulated structure with good hardness, durability, dimensional stability, resilience, and toughness.
    Type: Application
    Filed: August 21, 2009
    Publication date: February 4, 2010
    Inventors: Robert J. DeVoe, Catherine A. Leatherdale, Jeffrey M. Florczak, Patrick R. Fleming, John E. Potts
  • Patent number: 7655376
    Abstract: A process comprises (a) providing a substantially inorganic photoreactive composition comprising (1) at least one cationically reactive species, (2) a multi-photon photoinitiator system, and 10 (3) a plurality of precondensed, inorganic nanoparticles; (b) exposing, using a multibeam interference technique involving at least three beams, at least a portion of the photoreactive composition to radiation of appropriate wavelength, spatial distribution, and intensity to produce a two-dimensional or three-dimensional periodic pattern of reacted and non-reacted portions of the photoreactive composition; (c) exposing at least a portion of the non-reacted portion of the photoreactive composition to radiation of appropriate wavelength and intensity to cause multi-photon absorption and photoreaction to form additional reacted portion; (d) removing the non-reacted portion or the reacted portion of the photoreactive composition to form interstitial void space; and (e) at least partially filling the interstitial void space
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: February 2, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: Mark T. Anderson, Catherine A. Leatherdale, D. Scott Thompson
  • Patent number: 7655486
    Abstract: A method of making an LED light emitting device is disclosed. The method includes forming a multilayer encapsulant in contact with an LED by contacting the LED with a first encapsulant that is a silicone gel, silicone gum, silicone fluid, organosiloxane, polysiloxane, polyimide, polyphosphazene, sol-gel composition, or a first photopolymerizable composition, and then contacting the first encapsulant with a second photopolymerizable composition. Each photopolymerizable composition includes a silicon-containing resin and a metal-containing catalyst, the silicon-containing resin comprising silicon-bonded hydrogen and aliphatic unsaturation. Actinic radiation having a wavelength of 700 nm or less is applied to initiate hydrosilylation within the silicon-containing resins.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: February 2, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: D. Scott Thompson, Larry D. Boardman, Catherine A. Leatherdale
  • Publication number: 20090284840
    Abstract: A process for making a microlens array or a microlens array masterform comprises (a) providing a photoreactive composition, the photoreactive composition comprising (1) at least one reactive species that is capable of undergoing an acid- or radical-initiated chemical reaction, and (2) at least one multiphoton photoinitiator system; and (b) imagewise exposing at least a portion of the composition to light sufficient to cause simultaneous absorption of at least two photons, thereby inducing at least one acid- or radical-initiated chemical reaction where the composition is exposed to the light, the imagewise exposing being carried out in a pattern that is effective to define at least the surface of a plurality of microlenses, each of the microlenses having a principal axis and a focal length, and at least one of the microlenses being an aspherical microlens.
    Type: Application
    Filed: July 27, 2009
    Publication date: November 19, 2009
    Inventors: Robert J. DeVoe, Dora M. Paolucci, Craig R. Sykora, Todd A. Ballen, Douglas S. Dunn, Jeffrey M. Florczak, Catherine A. Leatherdale
  • Patent number: 7601484
    Abstract: Methods of fabricating optical elements that are encapsulated in monolithic matrices. The present invention is based, at least in one aspect, upon the concept of using multiphoton, multi-step photocuring to fabricate encapsulated optical element(s) within a body of a photopolymerizable composition. Imagewise, multi-photon polymerization techniques are used to form the optical element. The body surrounding the optical element is also photohardened by blanket irradiation and/or thermal curing to help form an encapsulating structure. In addition, the composition also incorporates one or more other, non-diffusing binder components that may be thermosetting or thermoplastic. The end result is an encapsulated structure with good hardness, durability, dimensional stability, resilience, and toughness.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: October 13, 2009
    Assignee: 3M Innovative Properties Company
    Inventors: Robert J. DeVoe, Catherine A. Leatherdale, Jeffrey M. Florczak, Patrick R. Fleming, John E. Potts
  • Publication number: 20090250635
    Abstract: A method including providing a substrate having thereon a layer including a multiphoton polymerizable composition, applying a light beam to at least one region of the layer, wherein the light beam cures or initiates cure of the multiphoton curable photoreactive composition; and processing a portion of the light beam reflected off the substrate to obtain a location signal of an interface between the layer and the substrate at each region.
    Type: Application
    Filed: December 20, 2006
    Publication date: October 8, 2009
    Inventors: Craig R. Sykora, Steven C. Reed, Serge Wetzels, Catherine A. Leatherdale, Matthew R. C. Atkinson
  • Patent number: 7595515
    Abstract: Disclosed herein is a method of making a light emitting device comprising an LED and a molded silicon-containing encapsulant. The method includes contacting the LED with a photopolymerizable composition containing a silicon-containing resin having silicon-bonded hydrogen and aliphatic unsaturation and two metal-containing catalysts. One catalyst may be activated by actinic radiation, and the second by heat but not the actinic radiation. Polymerization of the photopolymerizable composition to form the encapsulant may be carried out by selectively activating the different catalysts. At some point before polymerization is complete, a mold is used to impart a predetermined shape to the encapsulant.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: September 29, 2009
    Assignee: 3M Innovative Properties Company
    Inventors: D. Scott Thompson, Catherine A. Leatherdale, Larry D. Boardman, Andrew J. Ouderkirk, Fedja Kecman
  • Patent number: 7583444
    Abstract: A process for making a microlens array or a microlens array masterform comprises (a) providing a photoreactive composition, the photoreactive composition comprising (1) at least one reactive species that is capable of undergoing an acid- or radical-initiated chemical reaction, and (2) at least one multiphoton photoinitiator system; and (b) imagewise exposing at least a portion of the composition to light sufficient to cause simultaneous absorption of at least two photons, thereby inducing at least one acid- or radical-initiated chemical reaction where the composition is exposed to the light, the imagewise exposing being carried out in a pattern that is effective to define at least the surface of a plurality of microlenses, each of the microlenses having a principal axis and a focal length, and at least one of the microlenses being an aspherical microlens.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: September 1, 2009
    Assignee: 3M Innovative Properties Company
    Inventors: Robert J. DeVoe, Dora M. Paolucci, Craig R. Sykora, Todd A. Ballen, Douglas S. Dunn, Jeffrey M. Florczak, Catherine A. Leatherdale
  • Patent number: 7573073
    Abstract: Light-emitting articles and methods of manufacturing such articles are disclosed. In one aspect, a light emitting article includes an optical element having an input and an output aperture, each having a size. An LED die having a size is optically coupled to the optical element. The output aperture size of the optical element matches the LED die size. In another aspect, an array of light-emitting articles includes an array of optical elements having a lapped input aperture surface, and an array of LED dies optically coupled to the optical elements at the input aperture. In another aspect, an array of light-emitting articles includes an array of optical elements, and an array of LED dies, each LED die having a size. Each LED die is optically coupled to an optical element at the input aperture. The output aperture size of the optical element is matched to the LED die size.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: August 11, 2009
    Assignee: 3M Innovative Properties Company
    Inventors: Catherine A. Leatherdale, Timothy D. Fletcher, Paul S. Lugg