Patents by Inventor Cecil C. Dishman

Cecil C. Dishman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9876437
    Abstract: An interleaved transformer or a transformer and integrated set of inductors formed via a magnetic structure comprising a set of E cores and an I core inserted between the set of E cores is provided in order to address issues that occur when a structured transformer is coupled together with inductor flux. Actual inductance exhibited by the transformers is controlled by a preselected precise gap between the I core and each of the E cores. The advantage of such a structured transformer cancels out the magnetic flux in certain legs of the magnetic structure requiring less magnetic material and thus, less core losses while improving the overall efficiency of a power supply.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: January 23, 2018
    Assignee: Lenovo Enterprise Solutions (Singapore) Pte. Ltd.
    Inventors: Chu T. Chung, Marc H. Coq, Cecil C. Dishman, Chien H. Lin, Randhir S. Malik
  • Publication number: 20160093432
    Abstract: An interleaved transformer or a transformer and integrated set of inductors formed via a magnetic structure comprising a set of E cores and an I core inserted between the set of E cores is provided in order to address issues that occur when a structured transformer is coupled together with inductor flux. Actual inductance exhibited by the transformers is controlled by a preselected precise gap between the I core and each of the E cores. The advantage of such a structured transformer cancels out the magnetic flux in certain legs of the magnetic structure requiring less magnetic material and thus, less core losses while improving the overall efficiency of a power supply.
    Type: Application
    Filed: September 26, 2014
    Publication date: March 31, 2016
    Inventors: Chu T. Chung, Marc H. Coq, Cecil C. Dishman, Chien H. Lin, Randhir S. Malik
  • Patent number: 8508182
    Abstract: An alternating current-to-direct current (AC-to-DC) power supply has a first stage providing a first DC voltage and a second stage providing a second DC voltage. The AC-to-DC power supply has a first efficiency at the first stage and a second efficiency at the second stage that is less than the first efficiency. The second DC voltage is also less than the first DC voltage. A blower is electrically connected to the first stage of the AC-to-DC power supply to receive the first DC voltage from the AC-to-DC power supply to power the blower. Electrical connection of the blower to the first stage of the AC-to-DC power supply instead of to the second stage of the AC-to-DC power supply wastes less power and is more efficient.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: August 13, 2013
    Assignee: International Business Machines Corporation
    Inventors: Randhir S. Malik, Jen-Ching Lin, Chu Te Chung, Cecil C. Dishman, Michael J. Steinmetz
  • Patent number: 8405945
    Abstract: An apparatus and system are disclosed for protecting a power distribution unit from an electrical fault. A fuse interrupts a flow of electrical current in response to the electrical current rising above a current rating of the fuse. A current sensor measures the amplitude of the electrical current and outputs a current amplitude signal. A relay interrupts the flow of electrical current in response to an OFF signal. A fault module receives the current amplitude signal and sends the OFF signal to the relay in response to the amplitude of the electrical current exceeding a threshold value. The relay, the fuse, and the threshold value are selected so that a switching time of the relay is less than an opening time of the fuse for an amplitude of the electrical current between the threshold value and a maximum fault current value, so that the relay prevents the fuse from opening.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: March 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: Robert DiMarco, Cecil C. Dishman, Eino A. Lindfors, Randhir S. Malik
  • Patent number: 8286010
    Abstract: A system includes a high-current junction, a voltage sensor, and a controller. Power connectors of two components are electrically connected at the high-current junction, where a high current passes between the two components at the high-current junction. The voltage sensor detects a voltage at the high-current junction. The controller performs a predetermined action in response to the voltage sensor detecting the voltage at the high-current junction being greater than a predetermined threshold voltage. The system may be a data center rack. The high-current junction may be the junction at which an alternating current (AC) input receives AC power from AC mains. The high-current junction may alternatively be the junction at which a power supply receives the AC power from the AC input to generate direct current (DC) power to provide to data center rack components insertable within the data center rack.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: October 9, 2012
    Assignee: International Business Machines Corporation
    Inventors: Randhir S. Malik, Cecil C. Dishman, Thomas S. Mazzeo
  • Patent number: 8200990
    Abstract: An apparatus, system, and method are disclosed for providing regulated electric power. At least two power buses transfer regulated direct current (“DC”) power from at least four power supplies to an electric load. The power supplies receive electric power from one or more electric sources and convert the electric power to the regulated DC electric power. A switch is connected between each of the power buses and the electric load. Each switch connects and disconnects a power bus to the electric load and transfers the regulated DC electric power from the buses to the electric load. An output power bus connection is disposed on each of the power supplies. Each of the power buses is connected to at least two power supplies and each output power bus connection connects the corresponding power supply upon which the output power bus connection is disposed to exactly one power bus.
    Type: Grant
    Filed: December 22, 2007
    Date of Patent: June 12, 2012
    Assignee: International Business Machines Corporation
    Inventors: Cecil C. Dishman, Jen-Ching Lin, Randhir S. Malik
  • Patent number: 8159837
    Abstract: An apparatus, system, and method are disclosed for efficiently providing bias voltages. A first switching regulator stage that includes an inductor receives an input voltage and provides as an output an intermediate regulated output voltage. A second switching regulator stage receives as input the intermediate regulated output voltage and outputs a regulated main output voltage. The second switching regulator stage includes at least one switch controller that provides one or more signals to one or more switches in the second switching regulator stage to regulate the main output voltage of the second regulator stage. A secondary bias module utilizes a secondary winding coupled with the inductor of the first regulator stage to provide a secondary bias output voltage to the switch controller of the second switching regulator stage. The secondary bias output voltage is referenced to the main output voltage of the second switching regulator stage.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: April 17, 2012
    Assignee: International Business Machines Corporation
    Inventors: Cecil C. Dishman, Jen-Ching Lin, Randhir S. Malik
  • Patent number: 8159198
    Abstract: An apparatus for efficient power supply operation variable input line voltages. The apparatus includes a detection module that senses the input line voltage to the power supply and determines whether it is high or low voltage. A turn module sets the turns ratio of the transformer to a first turns ratio if the input line voltage is low voltage. The turn module sets the turns ratio to a second turns ratio if the input line voltage is high. In one embodiment of the invention, a high voltage is between 180 and 250 volts, while a low voltage is between 90 and 130 volts. A primary module sets the boost voltage of the power supply's boost stage to a first voltage if the input line voltage is low, while it sets the boost voltage to a second voltage if the input line voltage is high. The first voltage may, for example, be 200 volts, and the second voltage 400 volts.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: April 17, 2012
    Assignee: International Business Machines Corporation
    Inventors: Cecil C. Dishman, Randhir S. Malik
  • Patent number: 8054599
    Abstract: An apparatus, system, and method are disclosed for detecting a power system component failure. The invention includes detecting an amount of input power provided on a power supply side of a connector, where the connector is configured to connect a switching power supply to a load such that power flows from the switching power supply to the load through the connector; detecting an amount of output power provided on a load side of the connector; determining if the amount of input power detected on the power supply side of the connector is more than a predefined threshold amount greater than the amount of output power detected on the load side of the connector; and shutting down the switching power supply the amount of detected input power is more than the predefined threshold amount greater than the amount of detected output power.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: November 8, 2011
    Assignee: International Business Machines Corporation
    Inventors: Cecil C. Dishman, Randhir S. Malik
  • Patent number: 8039989
    Abstract: An apparatus, system, and method are disclosed for a low cost multiple output redundant power supply. Disclosed is a power supply that includes a primary stage for regulating voltage on an internal bus. The power supply includes a first regulator stage and a second regulator stage connected to the internal bus. The first regulator stage regulates voltage on a bus configured to connect to a first system. The second regulator stage regulates voltage on a bus configured to connect to a second system. The each regulator stage continues to operate in the event the other regulator stage is not operating. A disconnecting means is connected between the primary stage and the each regulator stage for isolating the failed regulator stage from the other regulator stage and the primary stage.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: October 18, 2011
    Assignee: International Business Machines Corporation
    Inventors: Chu T. Chung, Cecil C. Dishman, Randhir S. Malik
  • Publication number: 20110170223
    Abstract: An apparatus and system are disclosed for protecting a power distribution unit from an electrical fault. A fuse interrupts a flow of electrical current in response to the electrical current rising above a current rating of the fuse. A current sensor measures the amplitude of the electrical current and outputs a current amplitude signal. A relay interrupts the flow of electrical current in response to an OFF signal. A fault module receives the current amplitude signal and sends the OFF signal to the relay in response to the amplitude of the electrical current exceeding a threshold value. The relay, the fuse, and the threshold value are selected so that a switching time of the relay is less than an opening time of the fuse for an amplitude of the electrical current between the threshold value and a maximum fault current value, so that the relay prevents the fuse from opening.
    Type: Application
    Filed: January 14, 2010
    Publication date: July 14, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert A. DiMarco, Cecil C. Dishman, Eino A. Lindfors, Randhir S. Malik
  • Patent number: 7979727
    Abstract: An apparatus, system, and method are disclosed for a power supply that is efficient in both high and low power conditions. An integrated power supply regulates current on a regulated bus to maintain a regulated bus voltage under varying load conditions. The integrated power supply includes a first power supply rated to provide full load power to the load and second power supply rated to provide power at levels below a minimum power threshold. The second power supply includes switching elements that have lower switching losses than switching elements of the first power supply. A sensing module measures power. A switching module starts up the second power supply and shuts down the first power supply if the measured power falls below the minimum power threshold, and starts up the first power supply and shuts down the second power supply if the measured power rises above the minimum power threshold.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: July 12, 2011
    Assignee: International Business Machines Corporation
    Inventors: Cecil C. Dishman, Randhir S. Malik, Trung M. Nguyen
  • Patent number: 7956579
    Abstract: Battery charge management systems for charging a battery bank including a plurality of batteries connected in series are disclosed that include: a power source having a charging port, the power source capable of providing power to each battery in the battery bank; a multiplexer connected to the battery bank, the multiplexer capable of connecting the charging port to a single battery at a time and capable of switching the connection of the charging port to each battery in the battery bank; and a microcontroller connected to the multiplexer and operatively coupled to each battery in the battery bank, the microcontroller capable of receiving discharge data and charge data for each battery in the battery bank, the microcontroller capable of instructing the multiplexer to switch the connection of the charging port with each battery in dependence upon the discharge data and the charge data for that battery.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: June 7, 2011
    Assignee: International Business Machines Corporation
    Inventors: Cecil C. Dishman, Eino A. Lindfors, Randhir S. Malik
  • Publication number: 20110113262
    Abstract: A system includes a high-current junction, a voltage sensor, and a controller. Power connectors of two components are electrically connected at the high-current junction, where a high current passes between the two components at the high-current junction. The voltage sensor detects a voltage at the high-current junction. The controller performs a predetermined action in response to the voltage sensor detecting the voltage at the high-current junction being greater than a predetermined threshold voltage. The system may be a data center rack. The high-current junction may be the junction at which an alternating current (AC) input receives AC power from AC mains. The high-current junction may alternatively be the junction at which a power supply receives the AC power from the AC input to generate direct current (DC) power to provide to data center rack components insertable within the data center rack.
    Type: Application
    Filed: November 9, 2009
    Publication date: May 12, 2011
    Inventors: Randhir S. Malik, Cecil C. Dishman, Thomas S. Mazzeo
  • Publication number: 20110110806
    Abstract: An alternating current-to-direct current (AC-to-DC) power supply has a first stage providing a first DC voltage and a second stage providing a second DC voltage. The AC-to-DC power supply has a first efficiency at the first stage and a second efficiency at the second stage that is less than the first efficiency. The second DC voltage is also less than the first DC voltage. A blower is electrically connected to the first stage of the AC-to-DC power supply to receive the first DC voltage from the AC-to-DC power supply to power the blower. Electrical connection of the blower to the first stage of the AC-to-DC power supply instead of to the second stage of the AC-to-DC power supply wastes less power and is more efficient.
    Type: Application
    Filed: November 9, 2009
    Publication date: May 12, 2011
    Inventors: Randhir S. Malik, Jen-Ching Lin, Chu Te Chung, Cecil C. Dishman, Michael J. Steinmetz
  • Patent number: 7924045
    Abstract: An apparatus for error checking in a power supply includes a power module that determines that the power supply is in a self-test condition. The self-test condition involves the power supply being connected to an input power source while it is disconnected from the electronic load that it normally services. A load module connects an internal test load to the power supply when the power supply is in self-test condition, and an error checking module performs error check operations on the power supply while it is connected to the test load. The apparatus also includes a notify module that actuates an indicator when the error checking module determines that there are one or more faults in the power supply. The apparatus may also include a log module for storing error messages and reports in non-volatile memory.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: April 12, 2011
    Assignee: International Business Machines Corporation
    Inventors: Cecil C. Dishman, Jen-Ching Lin, Eino A. Lindfors, Randhir S. Malik, Dale W. Wilhite
  • Patent number: 7908505
    Abstract: An apparatus, system, and method are disclosed for event, time, and failure state recording in a power supply. Disclosed is a power supply that receives AC voltage as an input and provides regulated DC voltage as an output; a microcontroller integrated into the power supply that regulates output voltage and monitors, records, and reports operating conditions of the power supply; and a non-volatile solid-state storage that can be repeatedly read from, written to, and erased by the microcontroller and integrated within the microcontroller such that only a single address is needed to access both the microcontroller and the solid-state storage, the solid-state storage configured to store operating data received from the microcontroller, the operating data including the recorded operating conditions of the power supply.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: March 15, 2011
    Assignee: International Business Machines Corporation
    Inventors: Randhir S. Malik, Cecil C. Dishman, Ted A. Howard, Eino A. Lindfors, Trung M. Nguyen
  • Patent number: 7888919
    Abstract: An apparatus, system, and method are disclosed for an adaptive high efficiency switching power supply. The switching power supply has a regulation stage with a stage controller that operates to regulate a voltage of the regulation stage relative to a reference voltage. A power detection module detects an amount of power used by the switching power supply. A low power module determines if the power supply is operating below a minimum power capacity threshold. A stage voltage adjustment module adjusts the reference voltage from a high power reference voltage to a low power reference voltage in response to the low power module determining that the power supply is operating below the minimum power capacity threshold. The low power reference voltage causes a regulated voltage adjustment such that the switching power supply operates more efficiently below the minimum power threshold.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: February 15, 2011
    Assignee: International Business Machines Corporation
    Inventors: Cecil C. Dishman, Randhir S. Malik
  • Patent number: 7859132
    Abstract: An apparatus, system, and method are disclosed for safely connecting a device to a power source. The invention includes a power bus switch that operates to selectively allow operational power to flow from a power supply to a load. The operational power is independent of auxiliary power which may be separately provided to the load. A detection module determines whether an input impedance of the load is greater than a minimum impedance threshold in response to the load being connected to the power supply. A switch module causes the power bus switch to allow operational power to flow to the load in response to the detection module determining that the input impedance is greater than the minimum impedance threshold. Thus, if the load has an acceptable input impedance level, then operational power may be provided to the load without risk of failure to the power system.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: December 28, 2010
    Assignee: International Business Machines Corporation
    Inventors: Chu R. Chung, Cecil C. Dishman, Jen-Ching Lin, Randhir S. Malik
  • Patent number: 7826236
    Abstract: An apparatus, system, and method are disclosed for a switching power supply with high efficiency near zero load conditions. A power detection module detects power provided to a load. The switching power supply is capable of operating in a zero voltage switching mode. The power detection module detects when the load power falls below a minimum power threshold. A low load power control module operates the switching power supply in a low load mode if the power detection module detects that the power to the load is below the minimum power threshold. The low load mode includes operating the power supply in zero voltage switching mode in response to an output voltage of the power supply falling below a regulation voltage threshold. The low load mode includes turning off switching of the power supply in response to the output voltage of the power supply rising above the regulation voltage threshold.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: November 2, 2010
    Assignee: International Business Machines Corporation
    Inventors: Cecil C. Dishman, Randhir S. Malik