Patents by Inventor Chang-seok Kang

Chang-seok Kang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10998329
    Abstract: Methods and apparatus for forming a plurality of nonvolatile memory cells are provided herein. In some embodiments, the method, for example, includes forming a plurality of nonvolatile memory cells, comprising forming, on a substrate, a stack of alternating layers of metal including a first layer of metal and a second layer of metal different from the first layer of metal; removing the first layer of metal to form spaces between the alternating layers of the second layer of metal; and one of depositing a first layer of material to partially fill the spaces to leave air gaps therein or depositing a second layer of material to fill the spaces.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: May 4, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Takehito Koshizawa, Mukund Srinivasan, Tomohiko Kitajima, Chang Seok Kang, Sung-Kwan Kang, Gill Y. Lee, Susmit Singha Roy
  • Patent number: 10964717
    Abstract: Methods and apparatus for forming a plurality of nonvolatile memory cells are provided herein. In some embodiments, the method, for example, includes forming, on a substrate, a stack of alternating layers including a first layer of material and a second layer of material different from the first layer of material; forming a memory hole in the stack of alternating layers of the first layer of material and the second layer of material; depositing a layer of blocking oxide on sides defining the memory hole; depositing a layer of silicon atop the layer of blocking oxide to form a silicon channel; deposit core oxide to fill the silicon channel; removing the first layer of material to form spaces between the alternating layers of the second material; and one of depositing a third layer of material to partially fill the spaces to leave air gaps therein or depositing a fourth layer of material to fill the spaces.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: March 30, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Sung-Kwan Kang, Gill Lee, Chang Seok Kang, Tomohiko Kitajima
  • Patent number: 10896728
    Abstract: In a method of writing data in a nonvolatile memory device including a plurality of cell strings, each of the plurality of cell strings includes a plurality of memory cells disposed in a vertical direction. A program target page is divided into a plurality of subpages. The program target page is connected to one of a plurality of wordlines. Each of the plurality of subpages includes memory cells that are physically spaced apart from one another. A program operation is sequentially performed on the plurality of subpages. A program verification operation is performed on the program target page including the plurality of subpages at a time.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: January 19, 2021
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kohji Kanamori, Chang-Seok Kang, Yong-Seok Kim, Kyung-Hwan Lee
  • Publication number: 20200381619
    Abstract: A semiconductor device includes interlayer insulating layers and horizontal structures alternately and repeatedly disposed on a semiconductor substrate, separation structures extending in a direction perpendicular to an upper surface of the semiconductor substrate on the semiconductor substrate, to extend in a first horizontal direction parallel to the upper surface of the semiconductor substrate, and vertical structures disposed between the separation structures. Each of the horizontal structures includes a plurality of semiconductor regions, and the plurality of semiconductor regions of each of the plurality of semiconductor regions include a first semiconductor region and a second semiconductor region sequentially arranged in a direction away from a side surface of a corresponding one of the vertical structures and having different conductivity types.
    Type: Application
    Filed: August 20, 2020
    Publication date: December 3, 2020
    Inventors: Kyung Hwan LEE, Chang Seok KANG, Yong Seok KIM, Kohji KANAMORI, Hui Jung KIM, Jun Hee LIM
  • Publication number: 20200373310
    Abstract: Methods and apparatus for forming a plurality of nonvolatile memory cells are provided herein. In some embodiments, the method, for example, includes forming a plurality of nonvolatile memory cells, comprising forming, on a substrate, a stack of alternating layers of metal including a first layer of metal and a second layer of metal different from the first layer of metal; removing the first layer of metal to form spaces between the alternating layers of the second layer of metal; and one of depositing a first layer of material to partially fill the spaces to leave air gaps therein or depositing a second layer of material to fill the spaces.
    Type: Application
    Filed: July 22, 2019
    Publication date: November 26, 2020
    Inventors: Takehito Koshizawa, Mukund Srinivasan, Tomohiko Kitajima, Chang Seok Kang, Sung-Kwan Kang, Gill Y. Lee, Susmit Singha Roy
  • Publication number: 20200312874
    Abstract: Methods of manufacturing memory devices are provided. The methods decrease the thickness of the first layers and increase the thickness of the second layers. Semiconductor devices are described having a film stack comprising alternating nitride and second layers in a first portion of the device, the alternating nitride and second layers of the film stack having a nitride:oxide thickness ratio (Nf:Of); and a memory stack comprising alternating word line and second layers in a second portion of the device, the alternating word line and second layers of the memory stack having a word line:oxide thickness ratio (Wm:Om), wherein 0.1(Wm:Om)<Nf:Of<0.95(Wm:Om).
    Type: Application
    Filed: March 30, 2020
    Publication date: October 1, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Chang Seok Kang, Tomohiko Kitajima, Mukund Srinivasan, Sanjay Natarajan
  • Patent number: 10763167
    Abstract: A vertical semiconductor device includes a conductive pattern structure in which insulation patterns and conductive patterns alternately and repeatedly stacked on the substrate. The conductive pattern structure includes an edge portion having a stair-stepped shape. Each of the conductive patterns includes a pad region corresponding to an upper surface of a stair in the edge portion. A pad conductive pattern is disposed to contact a portion of an upper surface of the pad region. A mask pattern is disposed on an upper surface of the pad conductive pattern. A contact plug penetrates the mask pattern to contact the pad conductive pattern.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: September 1, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kyung-Hwan Lee, Chang-Seok Kang, Yong-Seok Kim, Jun-Hee Lim, Kohji Kanamori
  • Publication number: 20200251151
    Abstract: Memory devices are described. The memory devices include a plurality of bit lines extending through a stack of alternating memory layers and dielectric layers. Each of the memory layers comprises a single crystalline-like silicon layer and includes a first word line, a second word line, a first capacitor, and a second capacitor. Methods of forming stacked memory devices are also described.
    Type: Application
    Filed: February 3, 2020
    Publication date: August 6, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Chang Seok Kang, Tomohiko Kitajima, Gill Yong Lee, Sanjay Natarajan, Sung-Kwan Kang, Lequn Liu
  • Publication number: 20200243554
    Abstract: A three-dimensional semiconductor device and a method of forming the same are provided. The three-dimensional semiconductor device comprises a substrate including first and second areas; first and second main separation patterns, disposed on the substrate and intersecting the first and second areas; gate electrodes disposed between the first and second main separation patterns and forming a stacked gate group, the gate electrodes sequentially stacked on the first area and extending in a direction from the first area to the second area; and at least one secondary separation pattern disposed on the second area, disposed between the first and second main separation patterns, and penetrating through the gate electrodes disposed on the second area. The gate electrodes include pad portions on the second area, and the pad portions are thicker than the gate electrodes disposed on the first area and in contact with the at least one secondary separation pattern.
    Type: Application
    Filed: April 10, 2020
    Publication date: July 30, 2020
    Inventors: Chang Sup LEE, Phil Ouk NAM, Sung Yun LEE, Chang Seok KANG
  • Publication number: 20200235122
    Abstract: Methods and apparatus for forming a plurality of nonvolatile memory cells are provided herein. In some embodiments, the method, for example, includes forming, on a substrate, a stack of alternating layers including a first layer of material and a second layer of material different from the first layer of material; forming a memory hole in the stack of alternating layers of the first layer of material and the second layer of material; depositing a layer of blocking oxide on sides defining the memory hole; depositing a layer of silicon atop the layer of blocking oxide to form a silicon channel; deposit core oxide to fill the silicon channel; removing the first layer of material to form spaces between the alternating layers of the second material; and one of depositing a third layer of material to partially fill the spaces to leave air gaps therein or depositing a fourth layer of material to fill the spaces.
    Type: Application
    Filed: August 1, 2019
    Publication date: July 23, 2020
    Inventors: SUNG-KWAN KANG, GILL LEE, CHANG SEOK KANG, TOMOHIKO KITAJIMA
  • Publication number: 20200227430
    Abstract: A vertical semiconductor device including a plurality of interlayer insulating layer patterns spaced apart from each other on a substrate and stacked in a vertical direction; a plurality of conductive layer patterns arranged between the interlayer insulating layer patterns and each having a rounded end, wherein at least one of the conductive layer patterns is configured to extend from one side wall of each of the interlayer insulating layer patterns and include a pad region, and the pad region includes a raised pad portion configured to protrude from a surface of the at least one conductive layer pattern; an upper interlayer insulating layer to cover the interlayer insulating layer patterns and the conductive layer patterns; and a contact plug configured to penetrate the upper interlayer insulating layer to be in contact with the raised pad portion of the at least one conductive layer pattern.
    Type: Application
    Filed: March 27, 2020
    Publication date: July 16, 2020
    Inventors: Jo-young Park, Chang-seok Kang, Chang-sup Lee, Se-mee Jang
  • Publication number: 20200202900
    Abstract: Memory devices are described. The memory devices include a plurality of bit lines extending through a stack of alternating memory layers and dielectric layers. Each of the memory layers include a first word line, a second word line, a first capacitor, and a second capacitor. Methods of forming stacked memory devices are also described.
    Type: Application
    Filed: December 18, 2019
    Publication date: June 25, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Sung-Kwan Kang, Gill Yong Lee, Chang Seok Kang
  • Patent number: 10680011
    Abstract: A vertical semiconductor device includes a conductive pattern structure, a memory layer, a pillar structure, and second and third insulation patterns. The conductive pattern structure includes conductive patterns and insulation layers, and may include a first portion extending in a first direction and a second portion protruding from a sidewall of the first portion. The conductive pattern structures are arranged in a second direction perpendicular to the first direction to form a trench therebetween. The memory layer is formed on sidewalls of the conductive pattern structures. The pillar structures in the trench, each including a channel pattern and a first insulation pattern formed on the memory layer, are spaced apart from each other in the first direction. The second insulation pattern is formed between the pillar structures. The third insulation pattern is formed between some pillar structures, and has a shape different from a shape of the second insulation pattern.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: June 9, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kyung-Hwan Lee, Chang-Seok Kang, Yong-Seok Kim, Jun-Hee Lim, Kohji Kanamori
  • Patent number: 10672789
    Abstract: A vertical semiconductor device may include a first gate pattern, second gate patterns, a first channel hole, a first semiconductor pattern, a second channel hole, and a second semiconductor pattern. The first gate pattern may extend in a first direction on a substrate including first and second regions. The first direction may be parallel to an upper surface of the substrate, and a portion of the first gate pattern on the second region may include a first opening. The second gate patterns may be vertically stacked and spaced apart from each other on the first gate pattern, and each of the second gate patterns may extend in the first direction. The first channel hole may extend through the second gate patterns and the first gate pattern and expose a first portion of the substrate on the first region of the substrate. The first semiconductor pattern may be at a lower portion of the first channel hole.
    Type: Grant
    Filed: September 3, 2018
    Date of Patent: June 2, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Min-Yeong Song, Chang-Seok Kang
  • Patent number: 10658374
    Abstract: A vertical semiconductor device including a plurality of interlayer insulating layer patterns spaced apart from each other on a substrate and stacked in a vertical direction; a plurality of conductive layer patterns arranged between the interlayer insulating layer patterns and each having a rounded end, wherein at least one of the conductive layer patterns is configured to extend from one side wall of each of the interlayer insulating layer patterns and include a pad region, and the pad region includes a raised pad portion configured to protrude from a surface of the at least one conductive layer pattern; an upper interlayer insulating layer to cover the interlayer insulating layer patterns and the conductive layer patterns; and a contact plug configured to penetrate the upper interlayer insulating layer to be in contact with the raised pad portion of the at least one conductive layer pattern.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: May 19, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jo-young Park, Chang-seok Kang, Chang-sup Lee, Se-mee Jang
  • Patent number: 10629609
    Abstract: A three-dimensional semiconductor device and a method of forming the same are provided. The three-dimensional semiconductor device comprises a substrate including first and second areas; first and second main separation patterns, disposed on the substrate and intersecting the first and second areas; gate electrodes disposed between the first and second main separation patterns and forming a stacked gate group, the gate electrodes sequentially stacked on the first area and extending in a direction from the first area to the second area; and at least one secondary separation pattern disposed on the second area, disposed between the first and second main separation patterns, and penetrating through the gate electrodes disposed on the second area. The gate electrodes include pad portions on the second area, and the pad portions are thicker than the gate electrodes disposed on the first area and in contact with the at least one secondary separation pattern.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: April 21, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Chang Sup Lee, Phil Ouk Nam, Sung Yun Lee, Chang Seok Kang
  • Publication number: 20200020396
    Abstract: In a method of writing data in a nonvolatile memory device including a plurality of cell strings, each of the plurality of cell strings includes a plurality of memory cells disposed in a vertical direction. A program target page is divided into a plurality of subpages. The program target page is connected to one of a plurality of wordlines. Each of the plurality of subpages includes memory cells that are physically spaced apart from one another. A program operation is sequentially performed on the plurality of subpages. A program verification operation is performed on the program target page including the plurality of subpages at a time.
    Type: Application
    Filed: January 9, 2019
    Publication date: January 16, 2020
    Inventors: Kohji KANAMORI, Chang-Seok KANG, Yong-Seok KIM, Kyung-Hwan LEE
  • Publication number: 20190393239
    Abstract: A vertical semiconductor device includes a conductive pattern structure, a memory layer, a pillar structure, and second and third insulation patterns. The conductive pattern structure includes conductive patterns and insulation layers, and may include a first portion extending in a first direction and a second portion protruding from a sidewall of the first portion. The conductive pattern structures are arranged in a second direction perpendicular to the first direction to form a trench therebetween. The memory layer is formed on sidewalls of the conductive pattern structures. The pillar structures in the trench, each including a channel pattern and a first insulation pattern formed on the memory layer, are spaced apart from each other in the first direction. The second insulation pattern is formed between the pillar structures. The third insulation pattern is formed between some pillar structures, and has a shape different from a shape of the second insulation pattern.
    Type: Application
    Filed: January 31, 2019
    Publication date: December 26, 2019
    Inventors: KYUNG-HWAN LEE, Chang-Seok Kang, Yong-Seok Kim, Jun-Hee Lim, Kohji Kanamori
  • Publication number: 20190363014
    Abstract: A vertical semiconductor device includes a conductive pattern structure in which insulation patterns and conductive patterns alternately and repeatedly stacked on the substrate. The conductive pattern structure includes an edge portion having a stair-stepped shape. Each of the conductive patterns includes a pad region corresponding to an upper surface of a stair in the edge portion. A pad conductive pattern is disposed to contact a portion of an upper surface of the pad region. A mask pattern is disposed on an upper surface of the pad conductive pattern. A contact plug penetrates the mask pattern to contact the pad conductive pattern.
    Type: Application
    Filed: January 9, 2019
    Publication date: November 28, 2019
    Inventors: Kyung-Hwan LEE, Chang-Seok KANG, Yong-Seok KIM, Jun-Hee LIM, Kohji KANAMORI
  • Publication number: 20190326511
    Abstract: A semiconductor device includes interlayer insulating layers and horizontal structures alternately and repeatedly disposed on a semiconductor substrate, separation structures extending in a direction perpendicular to an upper surface of the semiconductor substrate on the semiconductor substrate, to extend in a first horizontal direction parallel to the upper surface of the semiconductor substrate, and vertical structures disposed between the separation structures. Each of the horizontal structures includes a plurality of semiconductor regions, and the plurality of semiconductor regions of each of the plurality of semiconductor regions include a first semiconductor region and a second semiconductor region sequentially arranged in a direction away from a side surface of a corresponding one of the vertical structures and having different conductivity types.
    Type: Application
    Filed: October 28, 2018
    Publication date: October 24, 2019
    Inventors: Kyung Hwan LEE, Chang Seok KANG, Yong-Seok KIM, Kohji KANAMORI, Hui Jung KIM, Jun Hee LIM