Patents by Inventor Charalambos Polyzopoulos

Charalambos Polyzopoulos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11913357
    Abstract: A gas turbine sealing interface to seal a gap between a transition duct and a turbine section component is provided. The transition duct includes an outlet exit frame including at least one fastener hole. The turbine section component includes a first stage vane structure including an upstream lip. A seal couples the outlet exit frame to the first stage turbine vane structure. An L-shaped rail including a flat portion and a lipped portion disposed perpendicularly to the flat portion. The seal is secured to the outlet exit frame via the L-shaped rail. An upstream portion of the seal includes a U-shaped cross section forming a first groove. A downstream portion of the seal comprises a groove which engages the upstream lip of the first stage turbine vane structure. A gas turbine engine including a radially inner sealing interface and a radially outer sealing interface is also provided.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: February 27, 2024
    Assignee: Siemens Energy, Inc.
    Inventor: Charalambos Polyzopoulos
  • Patent number: 11466620
    Abstract: A support housing for use in distributing fuel in a gas turbine engine includes a main body defining an inlet aperture, a plurality of outlet apertures, and a substantially planar mounting surface. A first fuel channel has a wall that defines a first flow space and a support member extends across the first flow space and has a long axis oriented at an oblique angle with respect to the mounting surface.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: October 11, 2022
    Assignee: Siemens Energy, Inc.
    Inventors: Anand A. Kulkarni, Charalambos Polyzopoulos
  • Publication number: 20210199052
    Abstract: A support housing for use in distributing fuel in a gas turbine engine includes a main body defining an inlet aperture, a plurality of outlet apertures, and a substantially planar mounting surface. A first fuel channel has a wall that defines a first flow space and a support member extends across the first flow space and has a long axis oriented at an oblique angle with respect to the mounting surface.
    Type: Application
    Filed: May 1, 2018
    Publication date: July 1, 2021
    Inventors: Anand A. Kulkarni, Charalambos Polyzopoulos
  • Publication number: 20210148240
    Abstract: A gas turbine sealing interface to seal a gap between a transition duct and a turbine section component is provided. The transition duct includes an outlet exit frame including at least one fastener hole. The turbine section component includes a first stage vane structure including an upstream lip. A seal couples the outlet exit frame to the first stage turbine vane structure. An L-shaped rail including a flat portion and a lipped portion disposed perpendicularly to the flat portion. The seal is secured to the outlet exit frame via the L-shaped rail. An upstream portion of the seal includes a U-shaped cross section forming a first groove. A downstream portion of the seal comprises a groove which engages the upstream lip of the first stage turbine vane structure. A gas turbine engine including a radially inner sealing interface and a radially outer sealing interface is also provided.
    Type: Application
    Filed: July 5, 2017
    Publication date: May 20, 2021
    Inventor: Charalambos Polyzopoulos
  • Patent number: 10982853
    Abstract: An improved combustion section for a gas turbine engine is disclosed. A fuel nozzle includes new features which provide improved injection patterns of oil fuel and cooling water, resulting in better control of combustion gas temperature and NOx emissions, and eliminated impingement of cooling water on walls of the combustor. A new combustor includes a plate-fin design which provides improved cooling, while the combustor also makes more efficient use of available cooling air and has an improved component life. A new transition component has a smoother shape which reduces stagnation of combustion gas flow and impingement of combustion gas on transition component walls, improved materials and localized thickness increases for better durability, and improved cooling features for more efficient usage of cooling air.
    Type: Grant
    Filed: February 20, 2019
    Date of Patent: April 20, 2021
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Charalambos Polyzopoulos, Richard L. Thackway, Stephen A. Ramier, Vinayak V. Barve, Khalil Farid Abou-Jaoude, Daniel W. Garan, David P. Holzapfel, Kevin J. Spence, Joseph Scott Markovitz, Blake R. Cotten, Urmi B. Dave, Vaidyanathan Krishnan, Michael C. Escandon
  • Patent number: 10683766
    Abstract: A static wear seal for an interface between two components is provided. The static wear seal includes a body portion including a receptacle configured to receive an insert portion. The insert portion is disposed within the receptacle. The receptacle is formed within the body portion at a surface of the body portion known to wear due to contact with a turbine component and includes a locking means such that the insert portion is retained within the receptacle. The insert portion is configured to receive wear due to contact with the turbine component. A transition seal assembly for a gas turbine engine including at least two seals wherein one of the two seals is a static wear seal is provided as well as a method to protect a wear surface of a static wear seal sealing an interface between the turbine components.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: June 16, 2020
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Matthew H. Lang, James M. Hurney, Charalambos Polyzopoulos
  • Patent number: 10677167
    Abstract: A fuel manifold (10) configured to form a base support structure (12) to support a plurality of fuel nozzles (14) including a pilot fuel nozzle is provided. A restraining element (30) is arranged in the base support structure (12) to support the pilot fuel nozzle. Restraining element (30) is integrally formed with the base support structure. The restraining element being integrally formed with the base support structure is effective to arrange for an incremental thickness (34) in a portion (39) of a wall (34) interposed between the inner diameter (36) of restraining element (30) and respective proximate edges (40) of a number of pilot bolt holes (32) disposed around the restraining element.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: June 9, 2020
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Erick J. Deane, Miguel Bascones, Charalambos Polyzopoulos, Abhijeet Tiwary
  • Patent number: 10533750
    Abstract: A cross-flame duct for connecting adjacent combustors together in a gas turbine to guard against flameout conditions within the combustors, whereby the cross-flame duct includes first and second ducts forming a slip joint to prevent stress from developing within the cross-flame duct is disclosed. The cross-flame duct remains flexible during turbine operation due to the slip joint, thereby preventing damaging thermal and mechanical stresses from developing within the cross-flame duct and enhancing the useful life of the cross-flame duct and associated components. The first and second ducts include cooling chambers positioned between outer sleeves and inner housings and maintained with one or more standoffs to reduce thermal stress and gradients or prevent material loss due to overheating or burning. The cooling chambers are supplied with cooling fluids via one or more fluid ports extending through the outer sleeves enabling air to flow through the cooling chambers and into the combustors.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: January 14, 2020
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Daniel W. Garan, Richard L. Thackway, David P. Holzapfel, Stephen A. Ramier, Charalambos Polyzopoulos, Kevin J. Spence, Joseph Scott Markovitz
  • Patent number: 10518321
    Abstract: A casting method and cast manifold are provided. The method allows configuring conduits, such as conduits in a fuel feed boss and/or a base rocket, which are part of the manifold for removing a ceramic core from the cast without forming extraneous holes in the body of the manifold. Absence of such extraneous holes in turn allows eliminating sealing plugs and welds, which otherwise would be needed for sealing the extraneous holes.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: December 31, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventors: Erick J. Deane, Miguel Bascones, Charalambos Polyzopoulos, Abhijeet Tiwary
  • Publication number: 20190178495
    Abstract: An improved combustion section for a gas turbine engine is disclosed. A fuel nozzle includes new features which provide improved injection patterns of oil fuel and cooling water, resulting in better control of combustion gas temperature and NOx emissions, and eliminated impingement of cooling water on walls of the combustor. A new combustor includes a plate-fin design which provides improved cooling, while the combustor also makes more efficient use of available cooling air and has an improved component life. A new transition component has a smoother shape which reduces stagnation of combustion gas flow and impingement of combustion gas on transition component walls, improved materials and localized thickness increases for better durability, and improved cooling features for more efficient usage of cooling air.
    Type: Application
    Filed: February 20, 2019
    Publication date: June 13, 2019
    Inventors: Charalambos Polyzopoulos, Richard L. Thackway, Stephen A. Ramier, Vinayak V. Barve, Khalil Farid Abou-Jaoude, Daniel W. Garan, David P. Holzapfel, Kevin J. Spence, Joseph Scott Markovitz, Blake R. Cotten, Urmi B. Dave, Vaidyanathan Krishnan, Michael C. Escandon
  • Patent number: 10139108
    Abstract: A combustor basket assembly for a gas turbine engine that includes a combustor basket having a basket liner including an input end and an output end. An integrated exit cone and splash plate member is affixed to the output end of the basket liner and includes a base portion, an exit cone portion and a splash plate portion. The base portion includes an annular cooling channel that receives a cooling air flow and the exit cone portion and the splash plate portion each include an array of cooling feed holes in fluid communication with the cooling channel. The spacing between the feed holes and the size of the feed holes can be optimized to provide more cooling for hotter regions.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: November 27, 2018
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Richard L. Thackway, Charalambos Polyzopoulos, Jr., James M. Hurney
  • Patent number: 10139109
    Abstract: Can-annular burners for gas turbine engines with flow conditioners having locally varying, asymmetrical patterns of circumferential perforations, to promote uniform fuel-air mixture among all premixers in the burner basket. Any one or more of the perforation pattern, pattern density, perforation profiles and perforation cross sectional area is locally varied to alter circumferential airflow into the burner basket, which in turn mitigates non-uniform thru-flow variations across the burner's air inlet plane. In some embodiments, the flow conditioner asymmetric perforation patterns are tailored for individual burner locations within the engine's combustor section annular ring, which mitigates non-uniform thru-flow variation among different respective burners in the combustor section annular ring. Thru-flow uniformity within each burner and among all the combustor section burners promotes uniform engine combustion.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: November 27, 2018
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Richard L. Thackway, Charalambos Polyzopoulos, James M. Hurney
  • Patent number: 10132240
    Abstract: A multi-functional fuel nozzle (10) for a combustion turbine engine is provided. An annular fuel-injecting lance (12) may include a first fluid circuit (14) and a second fluid circuit (16). One of the first and second fluid circuits during a liquid fuel operating mode of the combustion turbine engine may convey a liquid fuel. The other of the first and second fluid circuits may convey a selectable non-fuel fluid. An atomizer (30) is disposed at the downstream end of the lance. The atomizer may have a first ejection orifice (32) responsive to the first fluid circuit to form a first atomized ejection cone (34), and a second ejection orifice (36) responsive to the second fluid circuit to form a second atomized ejection cone (38). The first and second ejection cones (34, 38) formed with the atomizer may be concentric cones that intersect with one another over a predefined angular range.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: November 20, 2018
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Stephen A. Ramier, Vinayak V. Barve, Richard L. Thackway, Charalambos Polyzopoulos, Khalil Farid Abou-Jaoude
  • Patent number: 10125991
    Abstract: A multi-functional fuel nozzle (10) for a combustion turbine engine is provided. A nozzle cap (50) may be disposed at a downstream end of the nozzle. A heat shield (60) is mounted onto the nozzle cap. A plurality of cooling channels (62) is arranged between a forward face of the nozzle cap and a corresponding back side of the heat shield. The plurality of cooling channels may be arranged to discharge cooling air over a forward face of an atomizer assembly in the multi-functional fuel nozzle.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: November 13, 2018
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Stephen A. Ramier, Vinayak V. Barve, Richard L. Thackway, Charalambos Polyzopoulos
  • Publication number: 20180230910
    Abstract: A fuel manifold (10) configured to form a base support structure (12) to support a plurality of fuel nozzles (14) in a combustor of a gas turbine engine is provided. The fuel manifold includes stage fuel galleries (16, 18), and fuel feed bosses (20, 22) may be configured to connect to respective tubes arranged to deliver gas fuel to the stage fuel galleries (16. 18). Fuel feed bosses (20, 22) are integrally formed with base support structure (12) and this allows the body of fuel manifold (10) to be free of weld joints for affixing the fuel feed boss to the base support structure.
    Type: Application
    Filed: December 22, 2016
    Publication date: August 16, 2018
    Inventors: Erick J. Deane, Miguel Bascones, Charalambos Polyzopoulos, Abhijeet Tiwary
  • Publication number: 20180229298
    Abstract: Casting method and cast manifold are provided. The method allows configuring conduits, such as conduits (46, 48) in a fuel feed boss (20) and/or a base rocket (13), which are part of the manifold for removing a ceramic core (44) from the cast without forming extraneous holes in the body of the manifold. Absence of such extraneous holes in turn allows eliminating sealing plugs and welds, which otherwise would be needed for sealing the extraneous holes.
    Type: Application
    Filed: December 22, 2016
    Publication date: August 16, 2018
    Inventors: Erick J. Deane, Miguel Bascones, Charalambos Polyzopoulos, Abhijeet Tiwary
  • Publication number: 20180179957
    Abstract: A fuel manifold (10) configured to form a base support structure (12) to support a plurality of fuel nozzles (14) including a pilot fuel nozzle is provided. A restraining element (30) is arranged in the base support structure (12) to support the pilot fuel nozzle. Restraining element (30) is integrally formed with the base support structure. The restraining element being integrally formed with the base support structure is effective to arrange for an incremental thickness (34) in a portion (39) of a wall (34) interposed between the inner diameter (36) of restraining element (30) and respective proximate edges (40) of a number of pilot bolt holes (32) disposed around the restraining element.
    Type: Application
    Filed: December 22, 2016
    Publication date: June 28, 2018
    Inventors: Erick J. Deane, Miguel Bascones, Charalambos Polyzopoulos, Abhijeet Tiwary
  • Patent number: 9958152
    Abstract: A nozzle cap (82) is disposed at a downstream end of the nozzle. The nozzle cap includes a bore arranged to accommodate a downstream portion of a fluid-injecting lance that extends along a longitudinal axis (18) of the nozzle. The downstream portion of the fluid-injecting lance includes a centrally-located atomizer (80) to form a first atomized ejection cone. An array of atomizers (84) is disposed in the nozzle cap. The array of atomizers is circumferentially disposed about the longitudinal axis of the lance. The array of atomizers may be positioned radially outwardly relative to the centrally-located atomizer to form an array of respective second atomized ejection cones.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: May 1, 2018
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Stephen A. Ramier, Vinayak V. Barve, Richard L. Thackway, Charalambos Polyzopoulos, Khalil Farid Abou-Jaoude
  • Patent number: 9909431
    Abstract: An adjustable blade root spring device for turbine blade fixation in turbomachinery. The device is designed to be placed in a space in a rotor disk cavity adjacent to a tip of a blade root, where the device applies a radial outward force on the turbine blade to fix the blade position in the rotor disk. The device includes a wave spring with integral end blocks which is compressed by a bolt and a coil spring. When the wave spring is compressed in length, it increases in height and makes contact with the rotor disk and the turbine blade. The force of the wave spring on the turbine blade can be adjusted via the bolt, and the coil spring provides an increased compliance range. The body of the device has an oblong cross-sectional shape, thereby preventing rotation of the device in the space between the blade and the disk.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: March 6, 2018
    Assignee: Siemens Energy, Inc.
    Inventors: Charalambos Polyzopoulos, Mohit Gupta, Robert Hudson, Erica Holden, David Myers
  • Patent number: D946711
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: March 22, 2022
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Charalambos Polyzopoulos, Richard L. Thackway