Patents by Inventor Charles Allen Stafford

Charles Allen Stafford has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11215636
    Abstract: Various examples are provided related to scanning tunneling thermometers and scanning tunneling microscopy (STM) techniques. In one example, a method includes simultaneously measuring conductance and thermopower of a nanostructure by toggling between: applying a time modulated voltage to a nanostructure disposed on an interconnect structure, the time modulated voltage applied at a probe tip positioned over the nanostructure, while measuring a resulting current at a contact of the interconnect structure; and applying a time modulated temperature signal to the nanostructure at the probe tip, while measuring current through a calibrated thermoresistor in series with the probe tip. In another example, a device includes an interconnect structure with connections to a first reservoir and a second reservoir; and a scanning tunneling probe in contact with a probe reservoir. Electrical measurements are simultaneously obtained for temperature and voltage applied to a nanostructure between the reservoirs.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: January 4, 2022
    Assignee: Arizona Board of Regents on Behalf of the University of Arizona
    Inventors: Abhay Shankar Chinivaranahalli Shastry, Charles Allen Stafford
  • Publication number: 20210072282
    Abstract: Various examples are provided related to scanning tunneling thermometers and scanning tunneling microscopy (STM) techniques. In one example, a method includes simultaneously measuring conductance and thermopower of a nanostructure by toggling between: applying a time modulated voltage to a nanostructure disposed on an interconnect structure, the time modulated voltage applied at a probe tip positioned over the nanostructure, while measuring a resulting current at a contact of the interconnect structure; and applying a time modulated temperature signal to the nanostructure at the probe tip, while measuring current through a calibrated thermoresistor in series with the probe tip. In another example, a device includes an interconnect structure with connections to a first reservoir and a second reservoir; and a scanning tunneling probe in contact with a probe reservoir. Electrical measurements are simultaneously obtained for temperature and voltage applied to a nanostructure between the reservoirs.
    Type: Application
    Filed: November 9, 2020
    Publication date: March 11, 2021
    Inventors: Abhay Shankar Chinivaranahalli Shastry, Charles Allen Stafford
  • Patent number: 10830792
    Abstract: Various examples are provided related to scanning tunneling thermometers and scanning tunneling microscopy (STM) techniques. In one example, a method includes simultaneously measuring conductance and thermopower of a nanostructure by toggling between: applying a time modulated voltage to a nanostructure disposed on an interconnect structure, the time modulated voltage applied at a probe tip positioned over the nanostructure, while measuring a resulting current at a contact of the interconnect structure; and applying a time modulated temperature signal to the nanostructure at the probe tip, while measuring current through a calibrated thermoresistor in series with the probe tip. In another example, a device includes an interconnect structure with connections to a first reservoir and a second reservoir; and a scanning tunneling probe in contact with a probe reservoir. Electrical measurements are simultaneously obtained for temperature and voltage applied to a nanostructure between the reservoirs.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: November 10, 2020
    Assignee: Arizona Board of Regents on Behalf of the University of Arizona
    Inventors: Abhay Shankar Chinivaranahalli Shastry, Charles Allen Stafford
  • Publication number: 20190285664
    Abstract: Various examples are provided related to scanning tunneling thermometers and scanning tunneling microscopy (STM) techniques. In one example, a method includes simultaneously measuring conductance and thermopower of a nanostructure by toggling between: applying a time modulated voltage to a nanostructure disposed on an interconnect structure, the time modulated voltage applied at a probe tip positioned over the nanostructure, while measuring a resulting current at a contact of the interconnect structure; and applying a time modulated temperature signal to the nanostructure at the probe tip, while measuring current through a calibrated thermoresistor in series with the probe tip. In another example, a device includes an interconnect structure with connections to a first reservoir and a second reservoir; and a scanning tunneling probe in contact with a probe reservoir. Electrical measurements are simultaneously obtained for temperature and voltage applied to a nanostructure between the reservoirs.
    Type: Application
    Filed: March 13, 2019
    Publication date: September 19, 2019
    Inventors: Abhay Shankar Chinivaranahalli Shastry, Charles Allen Stafford
  • Patent number: 9406789
    Abstract: A nanoscale variable resistor including a metal nanowire as an active element, a dielectric, and a gate. By selective application of a gate voltage, stochastic transitions between different conducting states, and even length, of the nanowire can be induced and with a switching time as fast as picoseconds. With an appropriate choice of dielectric, the transconductance of the device, which may also be considered an “electromechanical transistor,” is shown to significantly exceed the conductance quantum G0=2e2/h.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: August 2, 2016
    Assignees: NEW YORK UNIVERSITY, THE ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIVERSITY OF ARIZONA
    Inventors: Jerome Alexandre Bürki, Charles Allen Stafford, Daniel L. Stein
  • Publication number: 20130265099
    Abstract: A nanoscale variable resistor including a metal nanowire as an active element, a dielectric, and a gate. By selective application of a gate voltage, stochastic transitions between different conducting states, and even length, of the nanowire can be induced and with a switching time as fast as picoseconds. With an appropriate choice of dielectric, the transconductance of the device, which may also be considered an “electromechanical transistor,” is shown to significantly exceed the conductance quantum G0=2e2/h.
    Type: Application
    Filed: May 28, 2013
    Publication date: October 10, 2013
    Inventors: Jerome Alexandre Bürki, Charles Allen Stafford, Daniel L. Stein
  • Patent number: 8492231
    Abstract: A nanoscale variable resistor including a metal nanowire as an active element, a dielectric, and a gate. By selective application of a gate voltage, stochastic transitions between different conducting states, and even length, of the nanowire can be induced and with a switching time as fast as picoseconds. With an appropriate choice of dielectric, the transconductance of the device, which may also be considered an “electromechanical transistor,” is shown to significantly exceed the conductance quantum G0=2e2/h.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: July 23, 2013
    Assignees: Arizona Board of Regents on behalf of the University of Arizona, New York University
    Inventors: Jerome Alexandre Bürki, Charles Allen Stafford, Daniel L. Stein
  • Publication number: 20110260775
    Abstract: A nanoscale variable resistor including a metal nanowire as an active element, a dielectric, and a gate. By selective application of a gate voltage, stochastic transitions between different conducting states, and even length, of the nanowire can be induced and with a switching time as fast as picoseconds. With an appropriate choice of dielectric, the transconductance of the device, which may also be considered an “electromechanical transistor,” is shown to significantly exceed the conductance quantum G0=2e2/h.
    Type: Application
    Filed: June 25, 2008
    Publication date: October 27, 2011
    Inventors: Jerome Alexandre Bürki, Charles Allen Stafford, Daniel L. Stein
  • Patent number: 7786472
    Abstract: A molecular-based switching device and method for controlling charge transport across a molecule. The molecular-based switching device includes a molecule having first and second nodes in between which destructive quantum interference restricts electrical conduction from the first node to the second node in an off-state, a first electrode connected to the first node and configured to supply charge carriers to the first node, a second electrode connected to the second node and configured to remove the charge carriers from the second node, and a control element configured to reduce coherence in or alter charge transport paths between the first and second nodes so as to reduce existing destructive quantum interference and permit flow of the charge carriers from the first node to the second node.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: August 31, 2010
    Assignee: Arizona Board of Regents/Behalf of University of Arizona
    Inventors: Charles Allen Stafford, David Michael Cardamone, Sumitendra Mazumdar