Patents by Inventor Charles Kibby

Charles Kibby has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9453165
    Abstract: A process for converting a reactant composition comprising H2 and CO to a product comprising at least one aliphatic hydrocarbon having at least about 5 carbon atoms comprises: flowing the reactant composition through a microchannel reactor in contact with a Fischer-Tropsch catalyst to convert the reactant composition to the product, the microchannel reactor comprising a plurality of process microchannels containing the catalyst; transferring heat from the process microchannels to a heat exchanger; and removing the product from the microchannel reactor; the process producing at least about 0.5 gram of aliphatic hydrocarbon having at least about 5 carbon atoms per gram of catalyst per hour; the selectivity to methane in the product being less than about 25%. A supported catalyst comprises Co, and a microchannel reactor comprises at least one process microchannel and at least one adjacent heat exchange zone.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: September 27, 2016
    Assignee: Velocys, Inc.
    Inventors: Yong Wang, Anna Lee Tonkovich, Terry Mazanec, Francis P. Daly, Dave VanderWiel, Jianli Hu, Chunshe Cao, Charles Kibby, Xiaohong Li, Michael D. Briscoe, Nathan Gano, Ya-Huei Chin
  • Publication number: 20150259609
    Abstract: The disclosed invention relates to a process for converting a reactant composition comprising H2 and CO to a product comprising at least one aliphatic hydrocarbon having at least about 5 carbon atoms, the process comprising: flowing the reactant composition through a microchannel reactor in contact with a Fischer-Tropsch catalyst to convert the reactant composition to the product, the microchannel reactor comprising a plurality of process microchannels containing the catalyst; transferring heat from the process microchannels to a heat exchanger; and removing the product from the microchannel reactor; the process producing at least about 0.5 gram of aliphatic hydrocarbon having at least about 5 carbon atoms per gram of catalyst per hour; the selectivity to methane in the product being less than about 25%. The disclosed invention also relates to a supported catalyst comprising Co, and a microchannel reactor comprising at least one process microchannel and at least one adjacent heat exchange zone.
    Type: Application
    Filed: April 30, 2015
    Publication date: September 17, 2015
    Inventors: Yong Wang, Anna Lee Tonkovich, Terry Mazanec, Francis P. Daly, Dave VanderWiel, Jianli Hu, Chunshe Cao, Charles Kibby, Xiaohong Li, Michael D. Briscoe, Nathan Gano, Ya-Huei Chin
  • Patent number: 9023900
    Abstract: Disclosed is a process for converting a reactant composition comprising H2 and CO to a product comprising at least one aliphatic hydrocarbon having at least about 5 carbon atoms, the process comprising: flowing the reactant composition through a microchannel reactor in contact with a Fischer-Tropsch catalyst to convert the reactant composition to the product, the microchannel reactor comprising a plurality of process microchannels containing the catalyst; transferring heat from the process microchannels to a heat exchanger; and removing the product from the microchannel reactor; the process producing at least about 0.5 gram of aliphatic hydrocarbon having at least about 5 carbon atoms per gram of catalyst per hour; the selectivity to methane in the product being less than about 25%. Also disclosed is a supported catalyst comprising Co, and a microchannel reactor comprising at least one process microchannel and at least one adjacent heat exchange zone.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: May 5, 2015
    Assignee: Velocys, Inc.
    Inventors: Yong Wang, Anna Lee Tonkovich, Terry Mazanec, Francis P. Daly, Dave VanderWiel, Jianli Hu, Chunshe Cao, Charles Kibby, Xiaohong Li, Michael D. Briscoe, Nathan Gano, Ya-Huei Chin
  • Publication number: 20130217793
    Abstract: The disclosed invention relates to a process for converting a reactant composition comprising H2 and CO to a product comprising at least one aliphatic hydrocarbon having at least about 5 carbon atoms, the process comprising: flowing the reactant composition through a microchannel reactor in contact with a Fischer-Tropsch catalyst to convert the reactant composition to the product, the microchannel reactor comprising a plurality of process microchannels containing the catalyst; transferring heat from the process microchannels to a heat exchanger; and removing the product from the microchannel reactor; the process producing at least about 0.5 gram of aliphatic hydrocarbon having at least about 5 carbon atoms per gram of catalyst per hour; the selectivity to methane in the product being less than about 25%. The disclosed invention also relates to a supported catalyst comprising Co, and a microchannel reactor comprising at least one process microchannel and at least one adjacent heat exchange zone.
    Type: Application
    Filed: February 16, 2012
    Publication date: August 22, 2013
    Inventors: Yong Wang, Anna Lee Tonkovich, Terry Mazanec, Francis P. Daly, Dave VanderWiel, Jianli Hu, Chunshe Cao, Charles Kibby, Xiaohong Li, Michael D. Briscoe, Nathan Gano, Ya-Huei Chin
  • Patent number: 8425854
    Abstract: A synthesis gas conversion process for carrying out the process is disclosed. A hydrogen-containing sweep gas is caused to flow across a water permselective membrane adjacent a synthesis gas conversion reaction zone in which synthesis gas is contacted with a catalyst and converted to effluent including water. Water is removed from the reaction zone through the membrane. The sweep gas has sufficient hydrogen partial pressure to cause hydrogen to pass through the membrane into the reaction zone.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: April 23, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Shabbir Husain, Charles Kibby, Lixin You, Babak Fayyaz-Najafi
  • Publication number: 20130090394
    Abstract: A synthesis gas conversion process for carrying out the process is disclosed. A hydrogen-containing sweep gas is caused to flow across a water permselective membrane adjacent a synthesis gas conversion reaction zone in which synthesis gas is contacted with a catalyst and converted to effluent including water. Water is removed from the reaction zone through the membrane. The sweep gas has sufficient hydrogen partial pressure to cause hydrogen to pass through the membrane into the reaction zone.
    Type: Application
    Filed: October 7, 2011
    Publication date: April 11, 2013
    Applicant: Chevron U.S.A Inc.
    Inventors: Shabbir Husain, Charles Kibby, Lixin You, Babak Fayyaz
  • Patent number: 8188153
    Abstract: The disclosed invention relates to a process for converting a reactant composition comprising H2 and CO to a product comprising at least one aliphatic hydrocarbon having at least about 5 carbon atoms, the process comprising: flowing the reactant composition through a microchannel reactor in contact with a Fischer-Tropsch catalyst to convert the reactant composition to the product, the microchannel reactor comprising a plurality of process microchannels containing the catalyst; transferring heat from the process microchannels to a heat exchanger; and removing the product from the microchannel reactor; the process producing at least about 0.5 gram of aliphatic hydrocarbon having at least about 5 carbon atoms per gram of catalyst per hour; the selectivity to methane in the product being less than about 25%. The disclosed invention also relates to a supported catalyst comprising Co, and a microchannel reactor comprising at least one process microchannel and at least one adjacent heat exchange zone.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: May 29, 2012
    Assignee: Velocys, Inc.
    Inventors: Yong Wang, Anna Lee Tonkovich, Terry Mazanec, Francis P. Daly, Dave VanderWiel, Jianli Hu, Chunshe Cao, Charles Kibby, Xiaohong Shari Li, Michael D. Briscoe, Nathan Gano, Ya-Huei Chin
  • Publication number: 20100160463
    Abstract: The disclosed invention relates to a process for converting a reactant composition comprising H2 and CO to a product comprising at least one aliphatic hydrocarbon having at least about 5 carbon atoms, the process comprising: flowing the reactant composition through a microchannel reactor in contact with a Fischer-Tropsch catalyst to convert the reactant composition to the product, the microchannel reactor comprising a plurality of process microchannels containing the catalyst; transferring heat from the process microchannels to a heat exchanger; and removing the product from the microchannel reactor; the process producing at least about 0.5 gram of aliphatic hydrocarbon having at least about 5 carbon atoms per gram of catalyst per hour; the selectivity to methane in the product being less than about 25%. The disclosed invention also relates to a supported catalyst comprising Co, and a microchannel reactor comprising at least one process microchannel and at least one adjacent heat exchange zone.
    Type: Application
    Filed: March 5, 2010
    Publication date: June 24, 2010
    Inventors: Yong Wang, Anna Lee Tonkovich, Terry Mazanec, Francis P. Daly, Dave VanderWiel, Jianli Hu, Chunshe Cao, Charles Kibby, Xiaohong Shari Li, Michael D. Briscoe, Nathan Gano, Ya-Huei Chin
  • Patent number: 7722833
    Abstract: A microchannel reactor is described which has at least one process microchannel and at least one heat exchange zone. The microchannel reactor may be used for conducting a Fischer-Tropsch synthesis reaction.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: May 25, 2010
    Assignee: Velocys, Inc.
    Inventors: Yong Wang, Anna Lee Tonkovich, Terry Mazanec, Francis P. Daly, Dave VanderWiel, Jianli Hu, Chunshe Cao, Charles Kibby, Xiaohong Shari Li, Michael D. Briscoe, Nathan Gano, Ya-Huei Chin
  • Publication number: 20060251552
    Abstract: The disclosed invention relates to a process for converting a reactant composition comprising H2 and CO to a product comprising at least one aliphatic hydrocarbon having at least about 5 carbon atoms, the process comprising: flowing the reactant composition through a microchannel reactor in contact with a Fischer-Tropsch catalyst to convert the reactant composition to the product, the microchannel reactor comprising a plurality of process microchannels containing the catalyst; transferring heat from the process microchannels to a heat exchanger; and removing the product from the microchannel reactor; the process producing at least about 0.5 gram of aliphatic hydrocarbon having at least about 5 carbon atoms per gram of catalyst per hour; the selectivity to methane in the product being less than about 25%. The disclosed invention also relates to a supported catalyst comprising Co, and a microchannel reactor comprising at least one process microchannel and at least one adjacent heat exchange zone.
    Type: Application
    Filed: July 11, 2006
    Publication date: November 9, 2006
    Inventors: Yong Wang, Anna Tonkovich, Terry Mazanec, Francis Daly, Dave VanderWiel, Jianli Hu, Chunshe Cao, Charles Kibby, Xiaohong Li, Michael Briscoe, Nathan Gano, Ya-Huei Chin
  • Patent number: 7084180
    Abstract: The disclosed invention relates to a process for converting a reactant composition comprising H2 and CO to a product comprising at least one aliphatic hydrocarbon having at least about 5 carbon atoms, the process comprising: flowing the reactant composition through a microchannel reactor in contact with a Fischer-Tropsch catalyst to convert the reactant composition to the product, the microchannel reactor comprising a plurality of process microchannels containing the catalyst; transferring heat from the process microchannels to a heat exchanger; and removing the product from the microchannel reactor; the process producing at least about 0.5 gram of aliphatic hydrocarbon having at least about 5 carbon atoms per gram of catalyst per hour; the selectivity to methane in the product being less than about 25%. The disclosed invention also relates to a supported catalyst comprising Co, and a microchannel reactor comprising at least one process microchannel and at least one adjacent heat exchange zone.
    Type: Grant
    Filed: January 28, 2004
    Date of Patent: August 1, 2006
    Assignee: Velocys, Inc.
    Inventors: Yong Wang, Anna Lee Tonkovich, Terry Mazanec, Francis P. Daly, Dave VanderWiel, Jianli Hu, Chunshe Cao, Charles Kibby, Xiaohong Shari Li, Michael D. Briscoe, Nathan Gano, Ya-Huei Chin
  • Publication number: 20060063845
    Abstract: CO2 emissions from syngas conversion processes are reduced by use of a multi-stage Fischer-Tropsch reaction system. A process for the conversion of syngas using a Fischer-Tropsch reactor comprises forming a first syngas and reacting at least a portion of the first syngas in a Fischer-Tropsch reactor to form a first hydrocarbonaceous product and a second syngas. The second syngas is mixed with a hydrogen-containing stream to provide an adjusted syngas, at least a portion of which is reacted in a dual functional syngas conversion reactor to form a second hydrocarbonaceous product and a third syngas comprising a reduced amount of CO2 than was present in the adjusted syngas.
    Type: Application
    Filed: October 31, 2005
    Publication date: March 23, 2006
    Applicant: Chevron U.S.A., Inc.
    Inventors: Dennis O'Rear, Charles Kibby
  • Publication number: 20050165121
    Abstract: The disclosed invention relates to a process for converting a reactant composition comprising H2 and CO to a product comprising at least one aliphatic hydrocarbon having at least about 5 carbon atoms, the process comprising: flowing the reactant composition through a microchannel reactor in contact with a Fischer-Tropsch catalyst to convert the reactant composition to the product, the microchannel reactor comprising a plurality of process microchannels containing the catalyst; transferring heat from the process microchannels to a heat exchanger; and removing the product from the microchannel reactor; the process producing at least about 0.5 gram of aliphatic hydrocarbon having at least about 5 carbon atoms per gram of catalyst per hour; the selectivity to methane in the product being less than about 25%. The disclosed invention also relates to a supported catalyst comprising Co, and a microchannel reactor comprising at least one process microchannel and at least one adjacent heat exchange zone.
    Type: Application
    Filed: January 28, 2004
    Publication date: July 28, 2005
    Inventors: Yong Wang, Anna Tonkovich, Terry Mazanec, Francis Daly, Dave VanderWiel, Jianli Hu, Chunshe Cao, Charles Kibby, Xiaohong Li, Michael Briscoe, Nathan Gano, Ya-Huei Chin
  • Publication number: 20050113465
    Abstract: CO2 emissions from Fischer-Tropsch facilities are controlled by using multiple reactors. A process for the conversion of syngas using multiple Fischer-Tropsch reactors comprises reacting at least a portion of a first syngas in a first Fischer-Tropsch reactor to form a first hydrocarbonaceous product and a second syngas. The second syngas is mixed with a H2-containing stream to form an adjusted syngas. At least a portion of the adjusted syngas is reacted in a second Fischer-Tropsch reactor to form a second hydrocarbonaceous product and a third syngas. At least a portion of the first and second hydrocarbonaceous products are blended to obtain a blended hydrocarbonaceous product.
    Type: Application
    Filed: November 25, 2003
    Publication date: May 26, 2005
    Applicant: CHEVRON U.S.A. INC.
    Inventors: Dennis O'Rear, Charles Kibby
  • Publication number: 20050113463
    Abstract: CO2 emissions from syngas conversion processes are reduced by use of a multi-stage Fischer-Tropsch reaction system. A process for the conversion of syngas using a Fischer-Tropsch reactor comprises forming a first syngas and reacting at least a portion of the first syngas in a Fischer-Tropsch reactor to form a first hydrocarbonaceous product and a second syngas. The second syngas is mixed with a hydrogen-containing stream to provide an adjusted syngas, at least a portion of which is reacted in a dual functional syngas conversion reactor to form a second hydrocarbonaceous product and a third syngas comprising a reduced amount of CO2 than was present in the adjusted syngas.
    Type: Application
    Filed: November 25, 2003
    Publication date: May 26, 2005
    Applicant: CHEVRON U.S.A. INC.
    Inventors: Dennis O'Rear, Charles Kibby