Patents by Inventor Charles L. Byers

Charles L. Byers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7555328
    Abstract: An implantable substrate sensor has electronic circuitry and electrodes formed on opposite sides of a substrate. A protective coating covers the substrate, effectively hermetically sealing the electronic circuitry under the coating. Exposed areas of the electrodes are selectively left uncovered by the protective coating, thereby allowing such electrodes to be exposed to body tissue and fluids when the sensor is implanted in living tissue. The substrate on which the electronic circuitry and electrodes are formed is the same substrate or “chip” on which an integrated circuit (IC) is formed, which integrated circuit contains the desired electronic circuitry. Such approach eliminates the need for an hermetically sealed lid or cover to cover hybrid electronic circuitry, and allows the sensor to be made much thinner than would otherwise be possible. In one embodiment, two such substrate sensor may be placed back-to-back, with the electrodes facing outward.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: June 30, 2009
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Joseph H. Schulman, Charles L. Byers, John C. Gord, Rajiv Shah, Lyle Dean Canfield
  • Patent number: 7271525
    Abstract: An electronics filter circuit includes an electromechanical resonator that is mounted directly to the surface of a silicon integrated circuit, rather than being a surface mounted or leaded filter can on a circuit board. This filter circuit allows the integrated circuit electronic package to be significantly smaller than a conventional electromechanical resonator package. The electromechanical resonator may be protected during processing and during use with a protective cover that is made of a material such as titanium. The protective cover is attached to the integrated circuit chip.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: September 18, 2007
    Assignee: Alfred E. Mann Foundation For Scientific Research
    Inventors: Charles L. Byers, Joseph H. Schulman, Gary D. Schnittgrund
  • Patent number: 7235350
    Abstract: A protective, biocompatible coating or encapsulation material protects and insulates a component or device intended to be implanted in living tissue. The coating or encapsulation material comprises a thin layer or layers of alumina, zirconia or other ceramic, less than 25 microns thick, e.g., 5-10 microns thick. The alumina layer(s) may be applied at a relatively low temperature. Once applied, the layer provides excellent hermeticity, and prevents electrical leakage. Even though very thin, the alumina layer retains excellent insulating characteristics. In one embodiment, an alumina layer less than about 6 microns thick provides an insulative coating that exhibits less than 10 pA of leakage current over an area 75 mils by 25 mils area while soaking in a saline solution at temperatures up to 80° C. over a three month period.
    Type: Grant
    Filed: October 20, 2004
    Date of Patent: June 26, 2007
    Assignee: Alfred E. Mann Foundation
    Inventors: Joseph H. Schulman, Joseph Y. Lucisano, Rajiv Shah, Charles L. Byers, Shaun M. Pendo
  • Patent number: 7160672
    Abstract: A protective, biocompatible coating or encapsulation material protects and insulates a component or device intended to be implanted in living tissue. The coating or encapsulation material comprises a thin layer or layers of alumina, zerconia, or other ceramic, less than 25 microns thick, e.g., 5–10 microns thick. The alumina layer(s) may be applied at relatively low temperature. Once applied, the layer provides excellent hermeticity, and prevents electrical leakage. Even though very thin, the alumina layer retains excellent insulating characteristics. In one embodiment, an alumina layer less than about 6 microns thick provides an insulative coating that exhibits less than 10 pA of leakage current over an area 75 mils by 25 mils area while soaking in a saline solution at temperatures up to 80° C. over a three month period.
    Type: Grant
    Filed: June 10, 2005
    Date of Patent: January 9, 2007
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Joseph H. Schulman, Joseph Y. Lucisano, Rajiv Shah, Charles L. Byers, Shaun M. Pendo
  • Patent number: 7079881
    Abstract: An implantable substrate sensor has electronic circuitry and electrodes formed on opposite sides of a substrate. A protective coating covers the substrate, effectively hermetically sealing the electronic circuitry under the coating. Exposed areas of the electrodes are selectively left uncovered by the protective coating, thereby allowing such electrodes to be exposed to body tissue and fluids when the sensor is implanted in living tissue. The substrate on which the electronic circuitry and electrodes are formed is the same substrate or “chip” on which an integrated circuit (IC) is formed, which integrated circuit contains the desired electronic circuitry. Such approach eliminates the need for an hermetically sealed lid or cover to cover hybrid electronic circuitry, and allows the sensor to be made much thinner than would otherwise be possible. In one embodiment, two such substrate sensors may be placed back-to-back, with the electrodes facing outward.
    Type: Grant
    Filed: November 4, 2002
    Date of Patent: July 18, 2006
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Joseph H. Schulman, Charles L. Byers, John C. Gord, Rajiv Shah, Lyle Dean Canfield
  • Patent number: 7071546
    Abstract: An apparatus and packaging method for stacking a plurality of integrated circuit substrates, i.e., substrates having integrated circuits formed as integral portions of the substrates, which provides interconnection paths through the substrates to simplify electrical connections between the integrated circuits while facilitating minimization of the volume and customization of the three dimensional package size to conform to the available internal space within a housing, e.g., one used in an implantabie device where package volume is at a premium. Furthermore, an internal cavity can be created by the stacked formation that is suitable for mounting of a surface mount device, e.g., a crystal or the like.
    Type: Grant
    Filed: March 12, 2003
    Date of Patent: July 4, 2006
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Kate E. Fey, Charles L. Byers, Lee J. Mandell
  • Patent number: 6989200
    Abstract: The invention is a method of bonding a ceramic part to a metal part by heating a component assembly comprised of the metal part, the ceramic part, and a compatible interlayer material such as titanium-nickel alloy placed between the two parts and heated at a temperature that is greater than the eutectic temperature of the interlayer material, where alloys, intermetallics or solid solution formed between the metal part and the metal interlayer material, but that is less than the melting point of either the ceramic part or the metal part. The component assembly is held in intimate contact at temperature in a non-reactive atmosphere for a sufficient time to develop a hermetic and strong bond between the ceramic part and the metal part. The bonded component assembly is optionally treated with acid to remove unwanted materials, to assure a biocompatible component assembly for implantation in living tissue.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: January 24, 2006
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Charles L. Byers, Guangqiang Jiang, Gary D. Schnittgrund
  • Patent number: 6935897
    Abstract: A connector (1) and method of making electrical connection between an electrical conductor (7, 11) and a removable electrical device (2). The connector (7, 11) is an elastic material, such as silicone, that is both compatible with the environment and is an electrical insulator. It forces contact between the electrical device (2) and integral contacts (10, 13) in the connector (1) by virtue of its elasticity. The electrodes (4, 6) and the electrical connections are protected from the environment to avoid electrical leakage or corrosion of the electrodes (4, 6).
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: August 30, 2005
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: David L. Canfield, Charles L. Byers, Gary D. Schnittgrund
  • Patent number: 6934572
    Abstract: An implantable enzyme-based monitoring system suitable for long term in vivo use to measure the concentration of prescribed substances such as glucose is provided. In one embodiment, the implantable enzyme-based monitoring system includes at least one sensor assembly, an outer membrane surrounding the sensor assembly and having a window therein, and a polymeric window cover affixed to the outer membrane and covering the window. Preferably, the outer membrane of the monitoring system is silicone and the window cover is a polymer of 2-hydroxyethyl methacrylate (HEMA), N,N,-dimethylaminoethyl methacrylate (DMAEMA) and methacrylic acid (MA). Also provided herein is an implantable enzyme-based monitoring system having at least one sensor assembly, an outer membrane surrounding the sensor assembly and a coating affixed to the exterior surface of the outer membrane, wherein the coating resists blood coagulation and protein binding to the exterior surface of the outer membrane.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: August 23, 2005
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Joseph H. Schulman, Charles L. Byers, Gerald E. Adomian, Michael S. Colvin
  • Patent number: 6844023
    Abstract: A protective, biocompatible coating or encapsulation material protects and insulates a component or device intended to be implanted in living tissue. The coating or encapsulation material comprises a thin layer or layers of alumina, zirconia or other ceramic, less than 25 microns thick, e.g., 5-10 microns thick. The alumina layer(s) may be applied at relatively low temperature. Once applied, the layer provides excellent hermeticity, and prevents electrical leakage. Even though very thin, the alumina layer retains excellent insulating characteristics. In one embodiment, an alumina layer less than about 6 microns thick provides an insulative coating that exhibits less than 10 pA of leakage current over an area 75 mils by 25 mils area while soaking in a saline solution at temperatures up to 80° C. over a three month period.
    Type: Grant
    Filed: September 20, 2002
    Date of Patent: January 18, 2005
    Assignee: Medtronic Minimed, Inc.
    Inventors: Joseph H. Schulman, Joseph Y. Lucisano, Rajiv Shah, Charles L. Byers, Shaun M. Pendo
  • Patent number: 6829508
    Abstract: An electrically sensing and stimulating outer sheath for ensuring accurate surgical placement of a microsensor or a microstimulator near a nerve in living tissue is disclosed. The electrically sensing outer sheath may also be used to verify the function of the microstimulator or microsensor during surgical placement but before the outer sheath is removed. In the event that the microstimulator is not optimally placed near the nerve, or if the microstimulator is malfunctioning, this can be determined prior to removal of the outer sheath, thus reducing the possibility of nerve or tissue damage that might be incurred during a separate operation to remove the microstimulator.
    Type: Grant
    Filed: April 4, 2002
    Date of Patent: December 7, 2004
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Joseph H. Schulman, Ralph M. Weisner, David L. Canfield, Kate E. Fey, Charles L. Byers
  • Patent number: 6821154
    Abstract: A connector and method of making electrical connection between an electrical conductor and a removable electrical device. The connector is an elastic material, such as silicone, that is both compatible with the environment and is an electrical insulator. It forces contact between the electrical device and integral contacts in the connector by virtue of its elasticity. The electrodes and the connections are protected from the environment to avoid electrical leakage or corrosion of the electrodes.
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: November 23, 2004
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: David L. Canfield, Charles L. Byers
  • Patent number: 6792314
    Abstract: An implantable miniature eyelid electrode apparatus that causes a paralyzed eyelid to close or open by passing an electrical stimulating current to a nerve or muscle, is comprised of a longitudinally flexible, nonconductive body containing electrodes that pass an electrical signal to the nearby nerve or muscle, which closes or opens the eyelid. The apparatus is electrically actuated by a source that may be located remotely from the apparatus. The electrical signal passes along wires from the source to the apparatus. The apparatus is biocompatible with the environment in the living tissue and is electrically insulated from the surrounding tissue, except where the electrodes contact the living tissue. The apparatus is very small and is not obvious to visual inspection when implanted.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: September 14, 2004
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Charles L. Byers, Kate E. Fey, Ralph M. Weisner, Gary D. Schnittgrund
  • Publication number: 20040135473
    Abstract: The invention is a filter circuit that includes an electromechanical resonator that is mounted directly to the surface of a silicon integrated circuit, rather than being mounted as a surface mounted or leaded filter can on a circuit board. This filter system allows the integrated circuit electronic package to be significantly smaller than when a conventional electromechanical resonator package is used. The electromechanical resonator may be protected during processing and during use with a protective cover that is made of a material such as titanium. The protective cover is attached to the integrated circuit chip.
    Type: Application
    Filed: January 15, 2003
    Publication date: July 15, 2004
    Inventors: Charles L. Byers, Gary D. Schnittgrund, Joseph H. Schulman, Lee J. Mandell
  • Patent number: 6738672
    Abstract: The invention discloses methods of making electrical connections in living tissue between an electrically conductive wire and an implantable miniature device. The device may either stimulate muscles or nerves in the body or detect signals and transmit these signals outside the body or transmit the signals for use at another location within the body. The device is comprised of an electrically insulating or electrically conductive case with at least one electrode for transmitting electrical signals. The electrodes and the wire-electrode connections are protected from the aggressive environment within the body to avoid corrosion of the electrode and to avoid damage to the living tissue surrounding the device.
    Type: Grant
    Filed: October 4, 2001
    Date of Patent: May 18, 2004
    Assignee: The Alfred E. Mann Foundation for Scientific Research
    Inventors: Joseph H. Schulman, Kate E. Fey, Charles L. Byers, Yitzhak Zilberman, Robert D. Dell
  • Publication number: 20030192171
    Abstract: An apparatus and packaging method for stacking a plurality of integrated circuit substrates which provides interconnection paths through the substrates to simplify electrical connections between the integrated circuits while facilitating minimization of the volume and customization of the three dimensional package size to conform to the available internal space within a housing, e.g., one used in an implantable device where package volume is at a premium. Furthermore, an internal cavity can be created by the stacked formation that is suitable for mounting of a surface mount device, e.g., a crystal or the like.
    Type: Application
    Filed: March 12, 2003
    Publication date: October 16, 2003
    Inventors: Kate E. Fey, Charles L. Byers, Lee J. Mandell
  • Publication number: 20030087197
    Abstract: A protective, biocompatible coating or encapsulation material protects and insulates a component or device intended to be implanted in living tissue. The coating or encapsulation material comprises a thin layer or layers of alumina, zerconia, or other ceramic, less than 25 microns thick, e.g., 5-10 microns thick. The alumina layer(s) may be applied at relatively low temperature. Once applied, the layer provides excellent hermeticity, and prevents electrical leakage. Even though very thin, the alumina layer retains excellent insulating characteristics. In one embodiment, an alumina layer less than about 6 microns thick provides an insulative coating that exhibits less than 10 pA of leakage current over an area 75 mils by 25 mils area while soaking in a saline solution at temperatures up to 80° C. over a three month period.
    Type: Application
    Filed: September 20, 2002
    Publication date: May 8, 2003
    Applicant: Alfred E. Mann Foundation
    Inventors: Joseph H. Schulman, Joseph Y. Lucisano, Rajiv Shah, Charles L. Byers, Shaun M. Pendo
  • Publication number: 20030078484
    Abstract: An implantable substrate sensor has electronic circuitry and electrodes formed on opposite sides of a substrate. A protective coating covers the substrate, effectively hermetically sealing the electronic circuitry under the coating. Exposed areas of the electrodes are selectively left uncovered by the protective coating, thereby allowing such electrodes to be exposed to body tissue and fluids when the sensor is implanted in living tissue. The substrate on which the electronic circuitry and electrodes are formed is the same substrate or “chip” on which an integrated circuit (IC) is formed, which integrated circuit contains the desired electronic circuitry. Such approach eliminates the need for an hermetically sealed lid or cover to cover hybrid electronic circuitry, and allows the sensor to be made much thinner than would otherwise be possible. In one embodiment, two such substrate sensors may be placed back-to-back, with the electrodes facing outward.
    Type: Application
    Filed: November 4, 2002
    Publication date: April 24, 2003
    Applicant: Alfred E. Mann Foundation for Scientific Research
    Inventors: Joseph H. Schulman, Charles L. Byers, John C. Gord, Rajiv Shah, Lyle Dean Canfield
  • Publication number: 20030065254
    Abstract: An implantable enzyme-based monitoring system suitable for long term in vivo use to measure the concentration of prescribed substances such as glucose is provided. In one embodiment, the implantable enzyme-based monitoring system includes at least one sensor assembly, an outer membrane surrounding the sensor assembly and having a window therein, and a polymeric window cover affixed to the outer membrane and covering the window. Preferably, the outer membrane of the monitoring system is silicone and the window cover is a polymer of 2-hydroxyethyl methacrylate (HEMA), N,N,-dimethylaminoethyl methacrylate (DMAEMA) and methacrylic acid (MA). Also provided herein is an implantable enzyme-based monitoring system having at least one sensor assembly, an outer membrane surrounding the sensor assembly and a coating affixed to the exterior surface of the outer membrane, wherein the coating resists blood coagulation and protein binding to the exterior surface of the outer membrane.
    Type: Application
    Filed: October 31, 2002
    Publication date: April 3, 2003
    Applicant: Alfred E. Mann Foundation for Scientific Research
    Inventors: Joseph H. Schulman, Charles L. Byers, Gerald E. Adomian, Michael S. Colvin
  • Publication number: 20030023297
    Abstract: An implantable miniature eyelid electrode apparatus that causes a paralyzed eyelid to close or open by passing an electrical stimulating current to a nerve or muscle, is comprised of a longitudinally flexible, nonconductive body containing electrodes that pass an electrical signal to the nearby nerve or muscle, which closes or opens the eyelid. The apparatus is electrically actuated by a source that may be located remotely from the apparatus. The electrical signal passes along wires from the source to the apparatus. The apparatus is biocompatible with the environment in the living tissue and is electrically insulated from the surrounding tissue, except where the electrodes contact the living tissue. The apparatus is very small and is not obvious to visual inspection when implanted.
    Type: Application
    Filed: May 31, 2002
    Publication date: January 30, 2003
    Inventors: Charles L. Byers, Kate E. Fey, Ralph M. Weisner, Gary D. Schnittgrund