Patents by Inventor Charles Masamed Marcus
Charles Masamed Marcus has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230008150Abstract: A method of selectively etching a metal component of a workpiece further comprising a ferromagnetic insulator component. The method comprises contacting the metal component with an etchant solution. The etchant solution comprises a basic etchant and a solvent. The method is useful in the context of the fabrication of semiconductor-superconductor-ferromagnetic insulator hybrid devices, for example. The etchant solution may not attack the ferromagnetic insulator component. Also provided is a composition for etching a metal, and a kit comprising the composition and a composition for depositing a styrene-acrylate co-polymer on a surface.Type: ApplicationFiled: December 5, 2019Publication date: January 12, 2023Applicant: Microsoft Technology Licensing, LLCInventors: Shivendra UPADHYAY, Saulius VAITIEKENAS, Charles Masamed MARCUS
-
Publication number: 20230012371Abstract: A semiconductor-ferromagnetic insulator-superconductor hybrid device comprises a semiconductor component, a ferromagnetic insulator component, and a superconductor component. The semiconductor component has at least three facets. The ferromagnetic insulator component is arranged on a first facet and a second facet. The superconductor component is arranged on a third facet and extends over the ferromagnetic insulator component on at least the second facet. The device is useful for generating Majorana zero modes, which are useful for quantum computing. Also provided are a method of fabricating the device, and a method of inducing topological behaviour in the device.Type: ApplicationFiled: December 5, 2019Publication date: January 12, 2023Applicant: Microsoft Technology Licensing, LLCInventors: Peter KROGSTRUP JEPPESEN, Saulius VAITIEKENAS, Charles Masamed MARCUS
-
Publication number: 20220149262Abstract: A method of fabricating a semiconductor-superconductor hybrid device comprises providing a workpiece comprising a semiconductor component, a layer of a first superconductor material on the semiconductor component, and a layer of a second superconductor material on the first superconductor material, the second superconductor material being different from the first superconductor material; etching the layer of the second superconductor material to expose a portion of the first superconductor material; and oxidising the portion of the first superconductor material to form a passivating layer on the semiconductor. The first superconductor provides energy coupling between the semiconductor and the second superconductor, and the passivating layer protects the semiconductor while allowing electrostatic access thereto. Also provided are a hybrid device, and a method of etching.Type: ApplicationFiled: December 23, 2021Publication date: May 12, 2022Applicant: Microsoft Technology Licensing, LLCInventors: Geoffrey Charles Gardner, Asbjørn Cennet Cliff Drachmann, Charles Masamed Marcus, Michael James Manfra
-
Patent number: 11211543Abstract: A method of fabricating a semiconductor-superconductor hybrid device comprises providing a workpiece comprising a semiconductor component, a layer of a first superconductor material on the semiconductor component, and a layer of a second superconductor material on the first superconductor material, the second superconductor material being different from the first superconductor material; etching the layer of the second superconductor material to expose a portion of the first superconductor material; and oxidising the portion of the first superconductor material to form a passivating layer on the semiconductor. The first superconductor provides energy coupling between the semiconductor and the second superconductor, and the passivating layer protects the semiconductor while allowing electrostatic access thereto. Also provided are a hybrid device, and a method of etching.Type: GrantFiled: February 20, 2020Date of Patent: December 28, 2021Assignee: Microsoft Technology Licensing, LLCInventors: Geoffrey Charles Gardner, Asbjørn Cennet Cliff Drachmann, Charles Masamed Marcus, Michael James Manfra
-
Publication number: 20210175408Abstract: A method of fabricating a semiconductor-superconductor hybrid device comprises providing a workpiece comprising a semiconductor component, a layer of a first superconductor material on the semiconductor component, and a layer of a second superconductor material on the first superconductor material, the second superconductor material being different from the first superconductor material; etching the layer of the second superconductor material to expose a portion of the first superconductor material; and oxidising the portion of the first superconductor material to form a passivating layer on the semiconductor. The first superconductor provides energy coupling between the semiconductor and the second superconductor, and the passivating layer protects the semiconductor while allowing electrostatic access thereto. Also provided are a hybrid device, and a method of etching.Type: ApplicationFiled: February 20, 2020Publication date: June 10, 2021Applicant: Microsoft Technology Licensing, LLCInventors: Geoffrey Charles Gardner, Asbjørn Cennet Cliff Drachmann, Charles Masamed Marcus, Michael James Manfra
-
Patent number: 10692010Abstract: The disclosure relates to a quantum device and method of fabricating the same. The device comprises one or more semiconductor-superconductor nanowires, each comprising a length of semiconductor material and a coating of superconductor material coated on the semiconductor material. The nanowires may be formed over a substrate. In a first aspect at least some of the nanowires are full-shell nanowires with superconductor material being coated around a full perimeter of the semiconductor material along some or all of the length of the wire, wherein the device is operable to induce at least one Majorana zero mode, MZM, in one or more active ones of the full-shell nanowires. In a second aspect at least some of the nanowires are arranged vertically relative to the plane of the substrate in the finished device.Type: GrantFiled: September 3, 2018Date of Patent: June 23, 2020Assignee: Microsoft Technology Licensing, LLCInventors: Michael Hartley Freedman, Bernard van Heck, Georg Wolfgang Winkler, Torsten Karzig, Roman Lutchyn, Peter Krogstrup Jeppesen, Chetan Nayak, Charles Masamed Marcus, Saulius Vaitiekenas
-
Patent number: 10665701Abstract: The disclosure relates to a quantum device and method of fabricating the same. The device comprises one or more semiconductor-superconductor nanowires, each comprising a length of semiconductor material and a coating of superconductor material coated on the semiconductor material. The nanowires may be formed over a substrate. In a first aspect at least some of the nanowires are full-shell nanowires with superconductor material being coated around a full perimeter of the semiconductor material along some or all of the length of the wire, wherein the device is operable to induce at least one Majorana zero mode, MZM, in one or more active ones of the full-shell nanowires. In a second aspect at least some of the nanowires are arranged vertically relative to the plane of the substrate in the finished device.Type: GrantFiled: September 3, 2018Date of Patent: May 26, 2020Assignee: Microsoft Technology Licensing, LLCInventors: Michael Hartley Freedman, Bernard van Heck, Georg Wolfgang Winkler, Torsten Karzig, Roman Lutchyn, Peter Krogstrup Jeppesen, Chetan Nayak, Charles Masamed Marcus, Saulius Vaitiekėnas
-
Publication number: 20200027030Abstract: The disclosure relates to a quantum device and method of fabricating the same. The device comprises one or more semiconductor-superconductor nanowires, each comprising a length of semiconductor material and a coating of superconductor material coated on the semiconductor material. The nanowires may be formed over a substrate. In a first aspect at least some of the nanowires are full-shell nanowires with superconductor material being coated around a full perimeter of the semiconductor material along some or all of the length of the wire, wherein the device is operable to induce at least one Majorana zero mode, MZM, in one or more active ones of the full-shell nanowires. In a second aspect at least some of the nanowires are arranged vertically relative to the plane of the substrate in the finished device.Type: ApplicationFiled: September 3, 2018Publication date: January 23, 2020Applicant: Microsoft Technology Licensing, LLCInventors: Michael Hartley Freedman, Bernard van Heck, Georg Wolfgang Winkler, Torsten Karzig, Roman Lutchyn, Peter Krogstrup Jeppesen, Chetan Nayak, Charles Masamed Marcus, Saulius Vaitiekenas
-
Publication number: 20200027971Abstract: The disclosure relates to a quantum device and method of fabricating the same. The device comprises one or more semiconductor-superconductor nanowires, each comprising a length of semiconductor material and a coating of superconductor material coated on the semiconductor material. The nanowires may be formed over a substrate. In a first aspect at least some of the nanowires are full-shell nanowires with superconductor material being coated around a full perimeter of the semiconductor material along some or all of the length of the wire, wherein the device is operable to induce at least one Majorana zero mode, MZM, in one or more active ones of the full-shell nanowires. In a second aspect at least some of the nanowires are arranged vertically relative to the plane of the substrate in the finished device.Type: ApplicationFiled: September 3, 2018Publication date: January 23, 2020Applicant: Microsoft Technology Licensing, LLCInventors: Michael Hartley Freedman, Bernard van Heck, Georg Wolfgang Winkler, Torsten Karzig, Roman Lutchyn, Peter Krogstrup Jeppesen, Chetan Nayak, Charles Masamed Marcus, Saulius Vaitiekenas