Patents by Inventor Charles T. Carlson

Charles T. Carlson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10957512
    Abstract: A carrier proximity mask and methods of assembling and using the carrier proximity mask may include providing a first carrier body, second carrier body, and set of one or more clamps. The first carrier body may have one or more openings formed as proximity masks to form structures on a first side of a substrate. The first and second carrier bodies may have one or more contact areas to align with one or more contact areas on a first and second sides of the substrate. The set of one or more clamps may clamp the substrate between the first carrier body and the second carrier body at contact areas to suspend work areas of the substrate between the first and second carrier bodies. The openings to define edges to convolve beams to form structures on the substrate.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: March 23, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Morgan Evans, Charles T. Carlson, Rutger Meyer Timmerman Thijssen, Ross Bandy
  • Publication number: 20210033197
    Abstract: Described are isolation valves, and chamber systems incorporating and methods of using the isolation valves. In some embodiments, an isolation valve may include a valve body and a flapper assembly. The valve body may define a first fluid volume, a second fluid volume, and a seating surface. The flapper assembly may include a flapper disposed inside the valve body having a flapper surface complimentary to the seating surface. The flapper may be pivotable within the valve body to a first position such that the flapper surface may be away from the seating surface to allow fluid flow between the first fluid volume and the second fluid volume. The flapper may be pivotable within the valve body to a second position such that the flapper surface may be proximate the seating surface to form a non-contact seal to restrict fluid flow between the first fluid volume and the second fluid volume.
    Type: Application
    Filed: July 22, 2020
    Publication date: February 4, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Benjamin Riordon, Anatha K. Subramani, Charles T. Carlson
  • Publication number: 20210013084
    Abstract: Exemplary substrate processing systems may include a transfer region housing defining a transfer region fluidly coupled with a plurality of processing regions. A sidewall of the transfer region housing may define a sealable access for providing and receiving substrates. The systems may include a plurality of substrate supports disposed within the transfer region. The systems may also include a transfer apparatus having a central hub including a first shaft and a second shaft counter-rotatable with the first shaft. The transfer apparatus may include an eccentric hub extending at least partially through the central hub, and which is radially offset from a central axis of the central hub. The transfer apparatus may also include an end effector coupled with the eccentric hub. The end effector may include a plurality of arms having a number of arms equal to the number of substrate supports of the plurality of substrate supports.
    Type: Application
    Filed: July 7, 2020
    Publication date: January 14, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Jason M. Schaller, Luke Bonecutter, Charles T. Carlson, Rajkumar Thanu, Karuppasamy Muthukamatchi, Jeff Hudgens, Benjamin Riordon
  • Publication number: 20210013067
    Abstract: Exemplary substrate processing systems may include a transfer region housing defining an internal volume. A sidewall of the transfer region housing may define a sealable access for providing and receiving substrates. The systems may include a plurality of substrate supports disposed within the transfer region. The systems may also include a transfer apparatus having a central hub including a first shaft and a second shaft concentric with and counter-rotatable to the first shaft. The transfer apparatus may include a first end effector coupled with the first shaft. The first end effector may include a plurality of first arms. The transfer apparatus may also include a second end effector coupled with the second shaft. The second end effector may include a plurality of second arms having a number of second arms equal to the number of first arms of the first end effector.
    Type: Application
    Filed: July 7, 2020
    Publication date: January 14, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Charles T. Carlson, Jason M. Schaller, Luke Bonecutter, David Blahnik
  • Publication number: 20210008727
    Abstract: Exemplary substrate processing systems may include a transfer region housing defining a transfer region fluidly coupled with a plurality of processing regions. A sidewall of the transfer region housing may define a sealable access for providing and receiving substrates. The systems may include a transfer apparatus having a central hub including a shaft extending at a distal end through the transfer region housing into the transfer region. The transfer apparatus may include a lateral translation apparatus coupled with an exterior surface of the transfer region housing, and configured to provide at least one direction of lateral movement of the shaft. The systems may also include an end effector coupled with the shaft within the transfer region. The end effector may include a plurality of arms having a number of arms equal to a number of substrate supports of the plurality of substrate supports in the transfer region.
    Type: Application
    Filed: July 7, 2020
    Publication date: January 14, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Paul Z. Wirth, Charles T. Carlson, Jason M. Schaller
  • Publication number: 20210013068
    Abstract: Exemplary substrate processing systems may include a transfer region housing defining a transfer region, and including substrate supports and a transfer apparatus. The transfer apparatus may include a central hub having a housing, and including a first shaft and a second shaft. The housing may be coupled with the second shaft, and may define an internal housing volume. The transfer apparatus may include a plurality of arms equal to a number of substrate supports of the plurality of substrate supports. Each arm of the plurality of arms may be coupled about an exterior of the housing. The transfer apparatus may include a plurality of arm hubs disposed within the internal housing volume. Each arm hub of the plurality of arm hubs may be coupled with an arm of the plurality of arms through the housing. The arm hubs may be coupled with the first shaft of the central hub.
    Type: Application
    Filed: July 7, 2020
    Publication date: January 14, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Jason M. Schaller, Charles T. Carlson, Luke Bonecutter, David Blahnik, Karuppasamy Muthukamatchi, Jeff Hudgens, Benjamin Riordon
  • Publication number: 20210013055
    Abstract: Exemplary substrate processing systems may include a factory interface and a load lock coupled with the factory interface. The systems may include a transfer chamber coupled with the load lock. The transfer chamber may include a robot configured to retrieve substrates from the load lock. The systems may include a chamber system positioned adjacent and coupled with the transfer chamber. The chamber system may include a transfer region laterally accessible to the robot. The transfer region may include a plurality of substrate supports disposed about the transfer region. Each substrate support of the plurality of substrate supports may be vertically translatable. The transfer region may also include a transfer apparatus rotatable about a central axis and configured to engage substrates and transfer substrates among the plurality of substrate supports. The chamber system may also include a plurality of processing regions vertically offset and axially aligned with an associated substrate support.
    Type: Application
    Filed: July 7, 2020
    Publication date: January 14, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Jason M. Schaller, Steve Hongkham, Charles T. Carlson, Tuan A. Nguyen, Swaminathan T. Srinivasan, Khokan Chandra Paul
  • Patent number: 10854483
    Abstract: Apparatuses for annealing semiconductor substrates, such as a batch processing chamber, are provided herein. The batch processing chamber includes a chamber body enclosing an internal volume, a cassette moveably disposed within the internal volume and a plug coupled to a bottom wall of the cassette. The chamber body has a hole through a bottom wall of the chamber body and is interfaced with one or more heaters operable to maintain the chamber body at a temperature of greater than 290° C. The cassette is configured to be raised to load a plurality of substrates thereon and lowered to seal the internal volume. The plug is configured to move up and down within the internal volume. The plug includes a downward-facing seal configured to engage with a top surface of the bottom wall of the chamber body and close the hole through the bottom wall of the chamber body.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: December 1, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jason M. Schaller, Robert Brent Vopat, Charles T. Carlson, Jeffrey Charles Blahnik, Timothy J. Franklin, David Blahnik, Aaron Webb
  • Publication number: 20200217423
    Abstract: The present disclosure generally relates to an isolation device for use in processing systems. The isolation device has a body with an inlet opening disposed at a first end coupled to a processing system component such as a remote plasma source and outlet openings, for example two, disposed at a second end which are coupled to a processing system component such as a process chamber. Flaps disposed within the body are actuatable to an open position from a closed position or to a closed position from an open position, to selectively allow or prevent passage of a fluid from the processing system component coupled to the isolation device to the other processing system component coupled thereto.
    Type: Application
    Filed: September 28, 2018
    Publication date: July 9, 2020
    Inventors: Benjamin B. RIORDON, Charles T. CARLSON, Aaron WEBB, Gary WYKA
  • Patent number: 10643867
    Abstract: A system for annealing substrates is provided. The system includes a first boiler having an input coupled to a water source; a second boiler having an input connected to an output of the first boiler; and a batch processing chamber coupled to the output of the second boiler, wherein the batch processing chamber is configured to anneal a plurality of substrates using steam from the second boiler.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: May 5, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jean Delmas, Charles T. Carlson, Robert Brent Vopat
  • Patent number: 10446710
    Abstract: An ion implanter and method for facilitating expeditious performance of maintenance on a component of the ion implanter in a manner that reduces downtime while increasing throughput of the ion implanter. The ion implanter includes a process chamber, a transfer chamber connected to the process chamber, a first isolation gate configured to controllably seal the transfer chamber from the process chamber, and a second isolation gate configured to controllably seal the transfer chamber from an atmospheric environment, wherein a component of the ion implanter can be transferred between the process chamber and the transfer chamber for performing maintenance on the component outside of the process chamber. Performing maintenance on a component of the ion implanter includes the steps of transferring the component from the process chamber to the transfer chamber, sealing the transfer chamber, venting the transfer chamber to atmospheric pressure, an opening the transfer chamber to an atmospheric environment.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: October 15, 2019
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Aaron P. Webb, Charles T. Carlson, Paul Forderhase, William T. Weaver, Robert Brent Vopat
  • Publication number: 20190293199
    Abstract: Embodiments of the disclosure generally relate to a flapper valve. The flapper valve may be used with processing chambers, such as semiconductor substrate processing chambers. In one embodiment, a flapper valve includes a housing having a first opening at a first end thereof and a second opening at a second end thereof, a first flapper pivotably disposed in the housing, and a second flapper pivotably disposed in the housing. The first and second flappers are movable to selectively open and close at least one of the first opening and the second opening.
    Type: Application
    Filed: December 1, 2017
    Publication date: September 26, 2019
    Inventors: Charles T. CARLSON, Tammy Jo PRIDE, Benjamin B. RIORDON, Aaron WEBB
  • Publication number: 20190148186
    Abstract: Apparatuses for annealing semiconductor substrates, such as a batch processing chamber, are provided herein. The batch processing chamber includes a chamber body enclosing an internal volume, a cassette moveably disposed within the internal volume and a plug coupled to a bottom wall of the cassette. The chamber body has a hole through a bottom wall of the chamber body and is interfaced with one or more heaters operable to maintain the chamber body at a temperature of greater than 290° C. The cassette is configured to be raised to load a plurality of substrates thereon and lowered to seal the internal volume. The plug is configured to move up and down within the internal volume. The plug includes a downward-facing seal configured to engage with a top surface of the bottom wall of the chamber body and close the hole through the bottom wall of the chamber body.
    Type: Application
    Filed: October 11, 2018
    Publication date: May 16, 2019
    Inventors: Jason M. SCHALLER, Robert Brent VOPAT, Charles T. CARLSON, Jeffrey Charles BLAHNIK, Timothy J. FRANKLIN, David BLAHNIK, Aaron WEBB
  • Publication number: 20190139793
    Abstract: A system for annealing substrates is provided. The system includes a first boiler having an input coupled to a water source; a second boiler having an input connected to an output of the first boiler; and a batch processing chamber coupled to the output of the second boiler, wherein the batch processing chamber is configured to anneal a plurality of substrates using steam from the second boiler.
    Type: Application
    Filed: October 25, 2018
    Publication date: May 9, 2019
    Inventors: Jean DELMAS, Charles T. CARLSON, Robert Brent VOPAT
  • Patent number: 10217657
    Abstract: An active substrate alignment system for an ion implanter, the system including a platen, a registration device adapted to selectively move a substrate engagement surface disposed adjacent the platen for limiting movement of a substrate disposed on the platen, a camera configured to capture an image of the substrate before the substrate is disposed on the platen, and a controller in communication with the camera and the registration device, the controller configured to command the registration device to move the substrate engagement surface based on the image to limit movement of the substrate in a predetermined manner.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: February 26, 2019
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Aaron P. Webb, Timothy J. Miller, Tammy Jo Pride, Christopher N. Grant, James D. Strassner, Charles T. Carlson
  • Publication number: 20170294330
    Abstract: An active substrate alignment system for an ion implanter, the system including a platen, a registration device adapted to selectively move a substrate engagement surface disposed adjacent the platen for limiting movement of a substrate disposed on the platen, a camera configured to capture an image of the substrate before the substrate is disposed on the platen, and a controller in communication with the camera and the registration device, the controller configured to command the registration device to move the substrate engagement surface based on the image to limit movement of the substrate in a predetermined manner.
    Type: Application
    Filed: September 4, 2015
    Publication date: October 12, 2017
    Inventors: Aaron P. Webb, Timothy J. Miller, Tammy Jo Pride, Christopher N. Grant, James D. Strassner, Charles T. Carlson
  • Patent number: 9694989
    Abstract: One embodiment of this workpiece handling system has conveyor belts and a load lock. A first swap robot holds and transports workpieces between a build station and the load lock. A gantry robot transports the workpieces between each of the conveyor belts and the first swap robot. In one instance, processed workpieces are transported from the first swap robot to a first conveyor belt and unprocessed workpieces are transported from a second conveyor belt to the first swap robot using the gantry robot. A second swap robot also may be used with the first swap robot to load and unload workpieces from the load lock.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: July 4, 2017
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Jason M. Schaller, Robert Brent Vopat, Charles T. Carlson, Malcolm N. Daniel, Aaron P. Webb, William T. Weaver
  • Patent number: 9659677
    Abstract: A shielding device for shielding an edge of a semiconductor substrate can include a multisided frame defining a perimeter of an enclosed area, and a shield coupled to the frame. The shield may be configured to move between a first position where the shield is retracted to the perimeter and a second position where shield advanced into the enclosed area. A method for processing a semiconductor substrate includes placing a semiconductor substrate in position in an implantation chamber, covering edges of the semiconductor substrate by pushing shields into engagement with the edges, performing an ion implantation procedure, and retracting the shields from the edges.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: May 23, 2017
    Assignee: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Aaron P. Webb, Charles T. Carlson, William T. Weaver, Timothy J. Miller, James D. Strassner
  • Patent number: 9570309
    Abstract: A mask alignment system for providing precise and repeatable alignment between ion implantation masks and workpieces. The system includes a mask frame having a plurality of ion implantation masks loosely connected thereto. The mask frame is provided with a plurality of frame alignment cavities, and each mask is provided with a plurality of mask alignment cavities. The system further includes a platen for holding workpieces. The platen may be provided with a plurality of mask alignment pins and frame alignment pins configured to engage the mask alignment cavities and frame alignment cavities, respectively. The mask frame can be lowered onto the platen, with the frame alignment cavities moving into registration with the frame alignment pins to provide rough alignment between the masks and workpieces. The mask alignment cavities are then moved into registration with the mask alignment pins, thereby shifting each individual mask into precise alignment with a respective workpiece.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: February 14, 2017
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Aaron P. Webb, Charles T. Carlson, William T. Weaver, Christopher N. Grant
  • Patent number: 9490153
    Abstract: A plurality of masks is attached to the underside of a mask frame. This attachment is made such that each mask can independently move relative to the mask frame in three directions. This relative movement allows each mask to adjust its position to align with respective alignment pins disposed on a working surface. In one embodiment, each mask is attached to the mask frame using fasteners, where the fasteners have a shaft with a diameter smaller than the diameter of the mounting hole disposed on the mask. A bias element may be used to allow relative movement between the mask and the mask frame in the vertical direction. Each mask may also have kinematic features to mate with the respective alignment pins on the working surface.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: November 8, 2016
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Aaron P. Webb, Charles T. Carlson, Michael Honan, Luigi G. Amato, Christopher Neil Grant, James D. Strassner