Patents by Inventor Charlotte YANG

Charlotte YANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12226766
    Abstract: Techniques for replacing nanopores within a nanopore based sequencing chip are provided. A first electrolyte solution is added to the external reservoir of the sequencing chip, introducing an osmotic imbalance between the reservoir and the well chamber located on the opposite side of a lipid bilayer membrane. The osmotic imbalance causes the membrane to change shape, and a nanopore within the membrane to be ejected. A second electrolyte solution is then added to the external reservoir to provide replacement nanopores and to restore the membrane shape. The replacement nanopores can be inserted into the membrane, effectively replacing the initial pore without causing the destruction of the membrane.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: February 18, 2025
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Geoffrey Barrall, Takeshi Harada, Jason Komadina, Pirooz Parvarandeh, Charlotte Yang
  • Publication number: 20250012777
    Abstract: Systems and methods for inserting a single pore into a membrane are described herein. A stepped or ramped voltage waveform can be applied across the membranes of the cells of an array, where the voltage waveform starts at first voltage and increases in magnitude over a period of time to a second voltage. The first voltage is selected to be low enough to reduce the risk of damaging the membrane, while the rate of voltage increase is selected to provide sufficient time for the pores to insert into the membranes. Once a pore is inserted into the membrane, the voltage across the membrane rapidly drops, thereby reducing the risk of damaging the membrane even if the applied voltage between the electrodes is further increased.
    Type: Application
    Filed: September 20, 2024
    Publication date: January 9, 2025
    Applicant: Roche Sequencing Solutions, Inc.
    Inventors: Geoffrey Barrall, George John Carman, Takeshi Harada, Jason Komadina, J. William Maney, Charlotte Yang
  • Patent number: 12123867
    Abstract: Systems and methods for inserting a single pore into a membrane are described herein. A stepped or ramped voltage waveform can be applied across the membranes of the cells of an array, where the voltage waveform starts at first voltage and increases in magnitude over a period of time to a second voltage. The first voltage is selected to be low enough to reduce the risk of damaging the membrane, while the rate of voltage increase is selected to provide sufficient time for the pores to insert into the membranes. Once a pore is inserted into the membrane, the voltage across the membrane rapidly drops, thereby reducing the risk of damaging the membrane even if the applied voltage between the electrodes is further increased.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: October 22, 2024
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Geoffrey Barrall, George John Carman, Takeshi Harada, Jason Komadina, J. William Maney, Jr., Charlotte Yang
  • Publication number: 20240317818
    Abstract: The present disclosure provides variant OmpG polypeptides, compositions comprising the OmpG variant polypeptides, and methods for using the variant OmpG polypeptides as nanopores for determining the sequence of single stranded nucleic acids. The variant OmpG nanopores reduce the ionic current noise versus the parental OmpG polypeptide from which they are derived and thereby enable sequencing of polynucleotides with single nucleotide resolution. The reduced ionic current noise also provides for the use of these OmpG nanopore variants in other single molecule sensing applications, e.g., protein sequencing.
    Type: Application
    Filed: June 5, 2024
    Publication date: September 26, 2024
    Applicant: Roche Sequencing Solutions, Inc.
    Inventors: Cynthia CECH, Tim CRAIG, Christos TZITZILONIS, Alexander YANG, Liv JENSEN, Charlotte YANG, Corissa HARRIS, Matthew DIPIETRO, Dhruti DALAL
  • Patent number: 12037366
    Abstract: The present disclosure provides variant OmpG polypeptides, compositions comprising the OmpG variant polypeptides, and methods for using the variant OmpG polypeptides as nanopores for determining the sequence of single stranded nucleic acids. The variant OmpG nanopores reduce the ionic current noise versus the parental OmpG polypeptide from which they are derived and thereby enable sequencing of polynucleotides with single nucleotide resolution. The reduced ionic current noise also provides for the use of these OmpG nanopore variants in other single molecule sensing applications, e.g., protein sequencing.
    Type: Grant
    Filed: August 15, 2023
    Date of Patent: July 16, 2024
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Cynthia Cech, Tim Craig, Christos Tzitzilonis, Alexander Yang, Liv Jensen, Charlotte Yang, Corissa Harris, Matthew Dipietro, Dhruti Dalal
  • Publication number: 20240010688
    Abstract: The present disclosure provides variant OmpG polypeptides, compositions comprising the OmpG variant polypeptides, and methods for using the variant OmpG polypeptides as nanopores for determining the sequence of single stranded nucleic acids. The variant OmpG nanopores reduce the ionic current noise versus the parental OmpG polypeptide from which they are derived and thereby enable sequencing of polynucleotides with single nucleotide resolution. The reduced ionic current noise also provides for the use of these OmpG nanopore variants in other single molecule sensing applications, e.g., protein sequencing.
    Type: Application
    Filed: August 15, 2023
    Publication date: January 11, 2024
    Applicant: Roche Sequencing Solutions, Inc.
    Inventors: Cynthia CECH, Tim CRAIG, Christos TZITZILONIS, Alexander Yang, Liv JENSEN, Charlotte YANG, Corissa HARRIS, Matthew DIPIETRO, Dhruti DALAL
  • Patent number: 11767348
    Abstract: The present disclosure provides variant OmpG polypeptides, compositions comprising the OmpG variant polypeptides, and methods for using the variant OmpG polypeptides as nanopores for determining the sequence of single stranded nucleic acids. The variant OmpG nanopores reduce the ionic current noise versus the parental OmpG polypeptide from which they are derived and thereby enable sequencing of polynucleotides with single nucleotide resolution. The reduced ionic current noise also provides for the use of these OmpG nanopore variants in other single molecule sensing applications, e.g., protein sequencing.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: September 26, 2023
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Cynthia Cech, Tim Craig, Christos Tzitzilonis, Alexander Yang, Liv Jensen, Charlotte Yang, Corissa Harris, Matthew Dipietro, Dhruti Dalal
  • Publication number: 20230105456
    Abstract: Systems and methods for inserting a single pore into a membrane under faradaic conditions are described herein. A stepped or ramped voltage waveform can be applied across the membranes of the cells of an array, where the voltage waveform starts at first voltage and increases in magnitude over a period of time to a second voltage. The voltage waveform has a polarity that maintains a first species of a redox couple in its current oxidation state. The first voltage is selected to be low enough to reduce the risk of damaging the membrane, while the rate of voltage increase is selected to provide sufficient time for the pores to insert into the membranes. Once a pore is inserted into the membrane, the voltage across the membrane rapidly drops, thereby reducing the risk of damaging the membrane even if the applied voltage between the electrodes is further increased.
    Type: Application
    Filed: December 9, 2022
    Publication date: April 6, 2023
    Inventors: Geoffrey BARRALL, Eric Takeshi HARADA, Jason David KOMADINA, J. William MANEY, JR., Charlotte YANG
  • Publication number: 20210302409
    Abstract: Systems and methods for inserting a single pore into a membrane are described herein. A stepped or ramped voltage waveform can be applied across the membranes of the cells of an array, where the voltage waveform starts at first voltage and increases in magnitude over a period of time to a second voltage. The first voltage is selected to be low enough to reduce the risk of damaging the membrane, while the rate of voltage increase is selected to provide sufficient time for the pores to insert into the membranes. Once a pore is inserted into the membrane, the voltage across the membrane rapidly drops, thereby reducing the risk of damaging the membrane even if the applied voltage between the electrodes is further increased.
    Type: Application
    Filed: June 10, 2021
    Publication date: September 30, 2021
    Inventors: Geoffrey Barrall, George John Carman, Takeshi Harada, Jason Komadina, J. William Maney, JR., Charlotte Yang
  • Publication number: 20200392191
    Abstract: The present disclosure provides variant OmpG polypeptides, compositions comprising the OmpG variant polypeptides, and methods for using the variant OmpG polypeptides as nanopores for determining the sequence of single stranded nucleic acids. The variant OmpG nanopores reduce the ionic current noise versus the parental OmpG polypeptide from which they are derived and thereby enable sequencing of polynucleotides with single nucleotide resolution. The reduced ionic current noise also provides for the use of these OmpG nanopore variants in other single molecule sensing applications, e.g., protein sequencing.
    Type: Application
    Filed: July 10, 2020
    Publication date: December 17, 2020
    Applicant: Roche Sequencing Solutions, Inc.
    Inventors: Cynthia CECH, Tim CRAIG, Christos TZITZILONIS, Alexander YANG, Liv JENSEN, Charlotte YANG, Corissa HARRIS, Matthew DIPIETRO, Dhruti DALAL
  • Patent number: 10752658
    Abstract: The present disclosure provides variant OmpG polypeptides, compositions comprising the OmpG variant polypeptides, and methods for using the variant OmpG polypeptides as nanopores for determining the sequence of single stranded nucleic acids. The variant OmpG nanopores reduce the ionic current noise versus the parental OmpG polypeptide from which they are derived and thereby enable sequencing of polynucleotides with single nucleotide resolution. The reduced ionic current noise also provides for the use of these OmpG nanopore variants in other single molecule sensing applications, e.g., protein sequencing.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: August 25, 2020
    Assignee: ROCHE SEQUENCING SOLUTIONS, INC.
    Inventors: Cynthia Cech, Tim Craig, Christos Tzitzilonis, Alexander Yang, Liv Jensen, Charlotte Yang, Corissa Harris, Matthew DiPietro, Dhruti Dalal
  • Publication number: 20200246791
    Abstract: Techniques for replacing nanopores within a nanopore based sequencing chip are provided. A first electrolyte solution is added to the external reservoir of the sequencing chip, introducing an osmotic imbalance between the reservoir and the well chamber located on the opposite side of a lipid bilayer membrane. The osmotic imbalance causes the membrane to change shape, and a nanopore within the membrane to be ejected. A second electrolyte solution is then added to the external reservoir to provide replacement nanopores and to restore the membrane shape. The replacement nanopores can be inserted into the membrane, effectively replacing the initial pore without causing the destruction of the membrane.
    Type: Application
    Filed: April 20, 2020
    Publication date: August 6, 2020
    Inventors: Geoffrey Barrall, Takeshi Harada, Jason Komadina, Pirooz Parvarandeh, Charlotte Yang
  • Publication number: 20200216887
    Abstract: A method is provided for preparing nanopore sequencing complexes in membranes for sequencing of polymers, e.g., polynucleotides and polypeptides. The nanopore sequencing complex is formed by the sequential linking of an enzyme to a nanopore that is inserted in a membrane, and of a polymer to the enzyme. Alternatively, the nanopore sequencing complex is formed by linking a preformed enzyme-polymer complex to a nanopore that is inserted in a membrane. The enzyme polymer complex is interchangeable.
    Type: Application
    Filed: January 20, 2017
    Publication date: July 9, 2020
    Applicant: Genia Technologies, Inc.
    Inventors: Timothy Kellogg Craig, Christos Tzitzilonis, Alexander H. Yang, Liv E. Jensen, Marshall Porter, Charlotte Yang, Corissa Harris, Matt Dipetro
  • Publication number: 20180362594
    Abstract: The present disclosure provides variant OmpG polypeptides, compositions comprising the OmpG variant polypeptides, and methods for using the variant OmpG polypeptides as nanopores for determining the sequence of single stranded nucleic acids. The variant OmpG nanopores reduce the ionic current noise versus the parental OmpG polypeptide from which they are derived and thereby enable sequencing of polynucleotides with single nucleotide resolution. The reduced ionic current noise also provides for the use of these OmpG nanopore variants in other single molecule sensing applications, e.g., protein sequencing.
    Type: Application
    Filed: September 20, 2016
    Publication date: December 20, 2018
    Applicant: GENIA TECHNOLOGIES, INC.
    Inventors: Cynthia CECH, Tim CRAIG, Christos TZITZILONIS, Alexander YANG, Liv JENSEN, Charlotte YANG, Corissa HARRIS