Patents by Inventor Chelsea Shields
Chelsea Shields has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230277057Abstract: Described herein is an implantable device configured to detect impedance characteristic of a tissue.Type: ApplicationFiled: February 17, 2023Publication date: September 7, 2023Applicant: The Regents of the University of CaliforniaInventors: Michel M. Maharbiz, Jose M. Carmena, Dongjin Seo, Monica Lin, Meir Marmor, Safa Herfat, Chelsea Shields Bahney
-
Patent number: 11607128Abstract: Described herein is an implantable device configured to detect impedance characteristic of a tissue.Type: GrantFiled: July 7, 2017Date of Patent: March 21, 2023Assignee: The Regents of the University of CaliforniaInventors: Michel M. Maharbiz, Jose M. Carmena, Dongjin Seo, Monica Lin, Meir Marmor, Safa Herfat, Chelsea Shields Bahney
-
Patent number: 9980770Abstract: An over shoe for use with electrosurgical instruments having a pair of juxtaposed jaw members pivotably associated with one another, at least one of which includes an electrically conductive surface disposed thereon which is in electrical engagement with an electrosurgical energy source. According to one aspect of the present disclosure, the over shoe includes a tissue contacting wall configured and dimensioned to selectively and substantially overlie the electrically conductive surface of the electrosurgical instrument. The tissue contacting wall is fabricated from a non-conductive material and includes a plurality of apertures formed therethrough. In another embodiment, the tissue contacting wall is electrically conductive and is configured for selective engagement atop on of the jaw members.Type: GrantFiled: July 22, 2015Date of Patent: May 29, 2018Assignee: COVIDIEN AGInventors: Chelsea Shields, Edward C. Meagher
-
Patent number: 9539053Abstract: An endoscopic bipolar forceps includes a housing having a shaft affixed thereto, the shaft including jaw members at a distal end thereof. The shaft includes jaw members adapted to connect to a source of electrosurgical energy such that the jaw members are capable of conducting energy through tissue held therebetween to effect a tissue seal. The forceps include a drive assembly that moves the jaw members relative to one another from a first position to a second position for manipulating tissue. A movable handle is included that is rotatable about a pivot. A knife assembly is also included having a movable knife rod to operatively engage a knife blade, the knife rod having a first longitudinal section having a first predetermined shape, and a second longitudinal section having a second predetermined shape. The first predetermined shape is different than the second predetermined shape.Type: GrantFiled: May 9, 2014Date of Patent: January 10, 2017Assignee: COVIDIEN LPInventors: David Hixson, Jeremy S. James, Jeffrey R. Unger, Chelsea Shields
-
Publication number: 20150320486Abstract: An over shoe for use with electrosurgical instruments having a pair of juxtaposed jaw members pivotably associated with one another, at least one of which includes an electrically conductive surface disposed thereon which is in electrical engagement with an electrosurgical energy source. According to one aspect of the present disclosure, the over shoe includes a tissue contacting wall configured and dimensioned to selectively and substantially overlie the electrically conductive surface of the electrosurgical instrument. The tissue contacting wall is fabricated from a non-conductive material and includes a plurality of apertures formed therethrough. In another embodiment, the tissue contacting wall is electrically conductive and is configured for selective engagement atop on of the jaw members.Type: ApplicationFiled: July 22, 2015Publication date: November 12, 2015Inventors: CHELSEA SHIELDS, EDWARD C. MEAGHER
-
Patent number: 9168089Abstract: A control system for controlling the output of an electrosurgical generator is disclosed. The control system includes a control module configured to receive an optical signal from a surgical site, the optical signal being related to an optical tissue characteristic, the control module configured to process the optical signal using a closed loop control loop and provide continual control of the output of the electrosurgical generator in response to the optical tissue characteristic.Type: GrantFiled: January 31, 2012Date of Patent: October 27, 2015Assignee: Covidien AGInventors: Steven P. Buysse, Bret S. Felton, David N. Heard, David Keppel, Ronald J. Podhajsky, Dale F. Schmaltz, Robert H. Wham, Edward C. Meagher, Kate R. Lawes, David A. Schechter, Chelsea Shields, Philip M. Tetzlaff, Jeremy S. James
-
Patent number: 9113900Abstract: A system for monitoring and/or controlling tissue modification during an electrosurgical procedure is disclosed. The system includes a sensor module and a control module operatively coupled to the sensor module and configured to control the delivery of electrosurgical energy to tissue based on information provided by the sensor module. The sensor module further includes at least one optical source configured to generate light and at least one optical detector configured to analyze a portion of the light transmitted through, and/or reflected from, the tissue.Type: GrantFiled: January 31, 2012Date of Patent: August 25, 2015Assignee: Covidien AGInventors: Steven P. Buysse, Bret S. Felton, David N. Heard, David S. Keppel, Ronald J. Podhajsky, Dale F. Schmaltz, Robert H. Wham, Edward C. Meagher, Kate R. Lawes, David A. Schechter, Chelsea Shields, Philip M. Tetzlaff, Jeremy S. James
-
Patent number: 9095347Abstract: An over shoe for use with electrosurgical instruments having a pair of juxtaposed jaw members pivotably associated with one another, at least one of which includes an electrically conductive surface disposed thereon which is in electrical engagement with an electrosurgical energy source. According to one aspect of the present disclosure, the over shoe includes a tissue contacting wall configured and dimensioned to selectively and substantially overlie the electrically conductive surface of the electrosurgical instrument. The tissue contacting wall is fabricated from a non-conductive material and includes a plurality of apertures formed therethrough. In another embodiment, the tissue contacting wall is electrically conductive and is configured for selective engagement atop on of the jaw members.Type: GrantFiled: September 18, 2008Date of Patent: August 4, 2015Assignee: Covidien AGInventors: Chelsea Shields, Edward C. Meagher
-
Publication number: 20140249528Abstract: An endoscopic bipolar forceps includes a housing having a shaft affixed thereto, the shaft including jaw members at a distal end thereof. The shaft includes jaw members adapted to connect to a source of electrosurgical energy such that the jaw members are capable of conducting energy through tissue held therebetween to effect a tissue seal. The forceps include a drive assembly that moves the jaw members relative to one another from a first position to a second position for manipulating tissue. A movable handle is included that is rotatable about a pivot. A knife assembly is also included having a movable knife rod to operatively engage a knife blade, the knife rod having a first longitudinal section having a first predetermined shape, and a second longitudinal section having a second predetermined shape. The first predetermined shape is different than the second predetermined shape.Type: ApplicationFiled: May 9, 2014Publication date: September 4, 2014Applicant: COVIDIEN LPInventors: DAVID HIXSON, JEREMY S. JAMES, JEFFREY R. UNGER, CHELSEA SHIELDS
-
Patent number: 8734443Abstract: An endoscopic bipolar forceps includes a housing having a shaft affixed thereto, the shaft including jaw members at a distal end thereof. The shaft includes jaw members adapted to connect to a source of electrosurgical energy such that the jaw members are capable of conducting energy through tissue held therebetween to effect a tissue seal. The forceps include a drive assembly that moves the jaw members relative to one another from a first position to a second position for manipulating tissue. A movable handle is included that is rotatable about a pivot. A knife assembly is also included having a movable knife rod to operatively engage a knife blade, the knife rod having a first longitudinal section having a first predetermined shape, and a second longitudinal section having a second predetermined shape. The first predetermined shape is different than the second predetermined shape.Type: GrantFiled: September 19, 2008Date of Patent: May 27, 2014Assignee: Covidien LPInventors: David W. Hixson, Jeremy James, Jeffrey R. Unger, Chelsea Shields
-
Patent number: 8679114Abstract: An electrode sealing assembly for use with an electrosurgical instrument for sealing tissue includes first and second jaw members which are movable from a first position in spaced relation relative to one another to at least one second position for grasping tissue. The jaw members include electrically conductive sealing plates designed to selectively transmit electrosurgical energy to tissue disposed between the sealing plates. The jaw members also include a thermoelectric cooling plate having a first surface in direct contact with an outer surface of the sealing plate. The thermoelectric cooling plate includes first and second electrical connections on opposite sides of the jaw member. The first connection is configured to selectively transmit a first electrical potential and the second connection is configured to selectively transmit a second electrical potential such that heat generated by the sealing plates is transferred away from the tissue via the thermoelectric cooling plate.Type: GrantFiled: April 23, 2010Date of Patent: March 25, 2014Assignee: Covidien AGInventors: Troy J. Chapman, Curt D. Hammill, Chelsea Shields, David A. Schechter, Ronald J. Podhajsky
-
Patent number: 8496656Abstract: A bipolar forceps for sealing tissue includes an elongated shaft having opposing jaw members at a distal end thereof, each of the jaw members including an electrically conductive sealing surface. The jaw members are movable relative to one another from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members cooperate to grasp tissue therebetween. The bipolar forceps is connected to a source of electrical energy such that the jaw members are capable of conducting bipolar energy through tissue grasped therebetween to effect a seal. The distance between the electrically conductive sealing surfaces when tissue is held therebetween is adjusted based upon a sensed pre-surgical condition during activation.Type: GrantFiled: January 16, 2009Date of Patent: July 30, 2013Assignee: Covidien AGInventors: Chelsea Shields, Edward C. Meagher
-
Publication number: 20120150170Abstract: A system for monitoring and/or controlling tissue modification during an electrosurgical procedure is disclosed. The system includes a sensor module and a control module operatively coupled to the sensor module and configured to control the delivery of electrosurgical energy to tissue based on information provided by the sensor module. The sensor module further includes at least one optical source configured to generate light and at least one optical detector configured to analyze a portion of the light transmitted through, and/or reflected from, the tissue.Type: ApplicationFiled: January 31, 2012Publication date: June 14, 2012Inventors: Steven P. Buysse, Bret S. Felton, David N. Heard, David Keppel, Ronald J. Podhajsky, Dale F. Schmaltz, Robert H. Wham, Edward C. Meagher, Kate R. Lawes, David A. Schechter, Chelsea Shields, Philip M. Tetzlaff, Jeremy S. James
-
Publication number: 20120130256Abstract: A control system for controlling the output of an electrosurgical generator is disclosed. The control system includes a control module configured to receive an optical signal from a surgical site, the optical signal being related to an optical tissue characteristic, the control module configured to process the optical signal using a closed loop control loop and provide continual control of the output of the electrosurgical generator in response to the optical tissue characteristic.Type: ApplicationFiled: January 31, 2012Publication date: May 24, 2012Inventors: Steven P. Buysse, Bret S. Felton, David N. Heard, David Keppel, Ronald J. Podhajsky, Dale F. Schmaltz, Robert H. Wham, Edward C. Meagher, Kate R. Lawes, David A. Schechter, Chelsea Shields, Philip M. Tetzlaff, Jeremy S. James
-
Patent number: 8105323Abstract: An electrosurgical generator is disclosed. The generator includes a microprocessor configured to generate a target impedance trajectory having at least one slope. The target impedance trajectory includes a plurality of target impedance values. The microprocessor is configured to drive tissue impedance along the target impedance trajectory by adjusting the output level to substantially match tissue impedance to a corresponding target impedance value. The microprocessor is further configured to compare tissue impedance to a threshold impedance value and adjust output of the electrosurgical generator when the tissue impedance is equal to or greater than the threshold impedance.Type: GrantFiled: October 24, 2006Date of Patent: January 31, 2012Assignee: Covidien AGInventors: Steven P. Buysse, Bret S. Felton, David N. Heard, David Keppel, Ronald J. Podhajsky, Dale F. Shmaltz, Robert H. Wham, Edward C. Meagher, Kate R. Lawes, David A. Schechter, Chelsea Shields, Philip M. Tetzlaff, Jeremy S. James
-
Patent number: 8070748Abstract: An endoscopic bipolar forceps includes a housing having a shaft affixed thereto, the shaft including jaw members at a distal end thereof. The shaft includes a longitudinal axis defined therethrough and the jaw members are adapted to connect to a source of electrosurgical energy such that the jaw members are capable of conducting energy through tissue held therebetween to effect a tissue seal. The forceps also includes a drive assembly which moves the jaw member relative to one another from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members are closer to one another for manipulating tissue. A movable handle is included which is rotatable about a pivot to force the drive assembly to move the jaw members between the first and second positions. The pivot is located a fixed distance above the longitudinal axis.Type: GrantFiled: July 9, 2010Date of Patent: December 6, 2011Assignee: TYCO Healthcare Group LPInventors: David Hixson, James D. Allen, IV, Jeremy S. James, Jessica Olson, Paul R. Romero, Chelsea Shields, Jeff Unger
-
Patent number: 7972328Abstract: An electrosurgical system is disclosed. The electrosurgical system includes an electrosurgical generator adapted to supply electrosurgical energy to tissue. The electrosurgical generator includes impedance sensing circuitry which measures impedance of tissue, a microprocessor configured to determine whether a tissue reaction has occurred as a function of a minimum impedance value and a predetermined rise in impedance, wherein tissue reaction corresponds to a boiling point of tissue fluid, and an electrosurgical instrument including at least one active electrode adapted to apply electrosurgical energy to tissue.Type: GrantFiled: January 24, 2007Date of Patent: July 5, 2011Assignee: Covidien AGInventors: Robert H. Wham, Rebecca Coulson, Kari Leidich, David A. Schechter, Chelsea Shields, Thomas A. Sturm, Craig Weinberg
-
Patent number: 7901400Abstract: A system and method are provided for controlling an electrosurgical generator generating electrosurgical energy which is delivered to a patient for performing an electrosurgical procedure for sealing tissue. The system includes a control module executable on a processor for receiving sensed data corresponding to at least one physical or electrical property related to delivery of the electrosurgical energy. The control module processes the received sensed data and controls the electrosurgical generator including generating at least one corresponding control signal in accordance with the processed sensed data for regulating electrosurgical energy output from the electrosurgical generator.Type: GrantFiled: January 27, 2005Date of Patent: March 8, 2011Assignee: Covidien AGInventors: Robert H. Wham, Chelsea Shields, Philip M. Tetzlaff, Jeremy S. James
-
Patent number: 7877852Abstract: A method for manufacturing an end effector assembly for sealing tissue includes the initial step of providing a pair of first and second jaw members each including an inwardly facing electrically conductive sealing surface. The method also includes the steps of: coating the inwardly facing electrically conductive sealing surface of one or both jaw members with an insulative material, the coating having a thickness within the range of about 0.001 inches to about 0.010 inches; allowing the insulative material to cure onto the inwardly facing electrically conductive sealing surface; removing a portion of the insulative material from the inwardly facing electrically conductive sealing surface to form a series of stop members arranged thereacross; and assembling the pair of first and second jaw members about a pivot such that the two inwardly facing electrically conductive sealing surfaces are substantially opposed to each other in pivotal relation relative to one another.Type: GrantFiled: September 19, 2008Date of Patent: February 1, 2011Assignee: TYCO Healthcare Group LPInventors: Jeffrey R. Unger, Robert M. Sharp, David W. Hixson, Chelsea Shields, Darion Peterson, Jeremy James, David M. Garrison, Michael R. Warzecha, Edward M. Chojin, Duane E. Kerr
-
Patent number: RE47375Abstract: A bipolar forceps for sealing tissue includes an elongated shaft having opposing jaw members at a distal end thereof, each of the jaw members including an electrically conductive sealing surface. The jaw members are movable relative to one another from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members cooperate to grasp tissue therebetween. The bipolar forceps is connected to a source of electrical energy such that the jaw members are capable of conducting bipolar energy through tissue grasped therebetween to effect a seal. The distance between the electrically conductive sealing surfaces when tissue is held therebetween is adjusted based upon a sensed pre-surgical condition during activation. A bipolar forceps for sealing tissue includes an elongated shaft having opposing jaw members at a distal end thereof, each of the jaw members including an electrically conductive sealing surface.Type: GrantFiled: July 30, 2015Date of Patent: May 7, 2019Assignee: Coviden AGInventors: Chelsea Shields, Edward C Meagher