Patents by Inventor Chen-Chung Lai

Chen-Chung Lai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160118350
    Abstract: A semiconductor device structure and a method of fabricating the same are provided. The semiconductor structure includes a substrate and an interconnection structure formed over the substrate. The interconnection structure includes a first dielectric layer and a first stress-reducing structure formed in the first dielectric layer. The interconnection structure further includes a first conductive feature formed in the first dielectric layer, and the first conductive feature is surrounded by the first stress-reducing structure.
    Type: Application
    Filed: January 4, 2016
    Publication date: April 28, 2016
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yi-Ruei LIN, Yen-Ming PENG, Han-Wei YANG, Chen-Chung LAI
  • Patent number: 9299621
    Abstract: An integrated circuit includes a number of lateral diffusion measurement structures arranged on a silicon substrate. A lateral diffusion measurement structure includes a p-type region and an n-type region which cooperatively span a predetermined initial distance between opposing outer edges of the lateral diffusion measurement structure. The p-type and n-type regions meet at a p-n junction expected to be positioned at a target junction location after dopant diffusion has occurred.
    Type: Grant
    Filed: September 12, 2013
    Date of Patent: March 29, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Han-Wei Yang, Yi-Ruei Lin, Chen-Chung Lai, Kang-Min Kuo, Bor-Zen Tien
  • Patent number: 9299658
    Abstract: A semiconductor device with the metal fuse and a fabricating method thereof are provided. The metal fuse connects an electronic component (e.g., a transistor) and a existing dummy feature which is grounded. The protection of the metal fuse can be designed to start at the beginning of the metallization formation processes. The grounded dummy feature provides a path for the plasma charging to the ground during the entire back end of the line process. The metal fuse is a process level protection as opposed to the diode, which is a circuit level protection. As a process level protection, the metal fuse protects subsequently-formed circuitry. In addition, no additional active area is required for the metal fuse in the chip other than internal dummy patterns that are already implemented.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: March 29, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chen-Chung Lai, Kang-Min Kuo, Yen-Ming Peng, Gwo-Chyuan Kuoh, Han-Wei Yang, Yi-Ruei Lin, Chin-Chia Chang, Ying-Chieh Liao, Che-Chia Hsu, Bor-Zen Tien
  • Patent number: 9252047
    Abstract: Embodiments of a semiconductor device structure and a method of fabricating the same are provided. The semiconductor device structure includes a substrate and a first layer formed over the substrate. The semiconductor device structure further includes a stress-reducing structure formed in the first layer, and a portion of the first layer is surrounded by the stress-reducing structure. The semiconductor device structure further includes a conductive feature formed in the portion of the first layer surrounded by the stress-reducing structure.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: February 2, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Yi-Ruei Lin, Yen-Ming Peng, Han-Wei Yang, Chen-Chung Lai
  • Publication number: 20160005650
    Abstract: A semiconductor structure and a method for forming the same are provided. The method includes forming a gate structure over a substrate and forming source and drain regions adjacent to the gate structure. The method also includes forming a first ILD layer surrounding the gate structure over the source and drain regions and forming a contact modulation structure over the gate structure. The method also includes etching the first ILD layer and the contact modulation structure to form a first contact trench over the source and drain regions and a second contact trench over the gate structure. The method further includes forming a first contact in the first contact trench and a second contact in the second contact trench. In addition, the first ILD layer has a first etching rate and the contact modulation structure has a second etching rate that is less than the first etching rate.
    Type: Application
    Filed: July 3, 2014
    Publication date: January 7, 2016
    Inventors: Han-Wei YANG, Chen-Chung LAI, Song-Bor LEE
  • Publication number: 20150311156
    Abstract: A semiconductor device having enhanced passivation integrity is disclosed. The device includes a substrate, a first layer, and a metal layer. The first layer is formed over the substrate. The first layer includes a via opening and a tapered portion proximate to the via opening. The metal layer is formed over the via opening and the tapered portion of the first layer. The metal layer is substantially free from gaps and voids.
    Type: Application
    Filed: July 6, 2015
    Publication date: October 29, 2015
    Inventors: Ying-Chieh Liao, Han-Wei Yang, Chen-Chung Lai, Kang-Min Kuo, Bor-Zen Tien
  • Publication number: 20150279769
    Abstract: A method of forming a chip package portion having a reduced loading effect between various metal lines during a leveling process comprises forming a first layer, a passivation layer over the first layer, a second layer over the passivation layer, and a third layer over the second layer. The method also comprises forming a patterned opening having multiple depths by removing portions of the first layer, the passivation layer, the second layer, and the third layer by way of one or more removal processes that remove portions of the first layer, the passivation layer, the second layer, and the third layer in accordance with one or more patterned photoresist depositions.
    Type: Application
    Filed: March 31, 2014
    Publication date: October 1, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Gwo-Chyuan KUO, Han-Wei YANG, Chen-Chung LAI
  • Publication number: 20150255394
    Abstract: A semiconductor device with the metal fuse and a fabricating method thereof are provided. The metal fuse connects an electronic component (e.g., a transistor) and a existing dummy feature which is grounded. The protection of the metal fuse can be designed to start at the beginning of the metallization formation processes. The grounded dummy feature provides a path for the plasma charging to the ground during the entire back end of the line process. The metal fuse is a process level protection as opposed to the diode, which is a circuit level protection. As a process level protection, the metal fuse protects subsequently-formed circuitry. In addition, no additional active area is required for the metal fuse in the chip other than internal dummy patterns that are already implemented.
    Type: Application
    Filed: May 20, 2015
    Publication date: September 10, 2015
    Inventors: Chen-Chung LAI, Kang-Min KUO, Yen-Ming PENG, Gwo-Chyuan KUOH, Han-Wei YANG, Yi-Ruei LIN, Chin-Chia CHANG, Ying-Chieh LIAO, Che-Chia HSU, Bor-Zen TIEN
  • Patent number: 9093373
    Abstract: An integrated circuit includes a p-type region formed beneath a surface of a semiconductor substrate, and an n-type region formed beneath the surface of the semiconductor substrate. The n-type region meets the p-type region at a p-n junction. A diffusion barrier structure, which is beneath the surface of the semiconductor substrate and extends along a side of the p-n junction, limits lateral diffusion between the p-type region and n-type region.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: July 28, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chin-Chia Chang, Han-Wei Yang, Chen-Chung Lai, Kang-Min Kuo, Bor-Zen Tien
  • Patent number: 9093528
    Abstract: The present disclosure relates to an integrated chip having one or more back-end-of-the-line (BEOL) stress compensation layers that reduce stress on one or more underlying semiconductor devices, and an associated method of formation. In some embodiments, the integrated chip has a semiconductor substrate with one or more semiconductor devices. A stressed element is located within a back-end-of-the-line stack at a position overlying the one or more semiconductor devices. A stressing layer is located over the stressed element induces a stress upon the stressed element. A stress compensation layer, located over the stressed element, provides a counter-stress to reduce the stress induced on the stressed element by the stressing layer. By reducing the stress induced on the stressed element, stress on the semiconductor substrate is reduced, improving uniformity of performance of the one or more semiconductor devices.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: July 28, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yen-Ming Peng, Chen-Chung Lai, Kang-Min Kuo, Bor-Zen Tien
  • Publication number: 20150206845
    Abstract: Embodiments of a semiconductor device structure and a method of fabricating the same are provided. The semiconductor device structure includes a substrate and a first layer formed over the substrate. The semiconductor device structure further includes a stress-reducing structure formed in the first layer, and a portion of the first layer is surrounded by the stress-reducing structure. The semiconductor device structure further includes a conductive feature formed in the portion of the first layer surrounded by the stress-reducing structure.
    Type: Application
    Filed: January 23, 2014
    Publication date: July 23, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Yi-Ruei LIN, Yen-Ming PENG, Han-Wei YANG, Chen-Chung LAI
  • Patent number: 9076804
    Abstract: A semiconductor device having enhanced passivation integrity is disclosed. The device includes a substrate, a first layer, and a metal layer. The first layer is formed over the substrate. The first layer includes a via opening and a tapered portion proximate to the via opening. The metal layer is formed over the via opening and the tapered portion of the first layer. The metal layer is substantially free from gaps and voids.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: July 7, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ying-Chieh Liao, Han-Wei Yang, Chen-Chung Lai, Kang-Min Kuo, Bor-Zen Tien
  • Patent number: 9070687
    Abstract: A semiconductor device with the metal fuse is provided. The metal fuse connects an electronic component (e.g., a transistor) and a existing dummy feature which is grounded. The protection of the metal fuse can be designed to start at the beginning of the metallization formation processes. The grounded dummy feature provides a path for the plasma charging to the ground during the entire back end of the line process. The metal fuse is a process level protection as opposed to the diode, which is a circuit level protection. As a process level protection, the metal fuse protects subsequently-formed circuitry. In addition, no additional active area is required for the metal fuse in the chip other than internal dummy patterns that are already implemented.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: June 30, 2015
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chen-Chung Lai, Kang-Min Kuo, Yen-Ming Peng, Gwo-Chyuan Kuoh, Han-Wei Yang, Yi-Ruei Lin, Chin-Chia Chang, Ying-Chieh Liao, Che-Chia Hsu, Bor-Zen Tien
  • Publication number: 20150069395
    Abstract: An integrated circuit includes a number of lateral diffusion measurement structures arranged on a silicon substrate. A lateral diffusion measurement structure includes a p-type region and an n-type region which cooperatively span a predetermined initial distance between opposing outer edges of the lateral diffusion measurement structure. The p-type and n-type regions meet at a p-n junction expected to be positioned at a target junction location after dopant diffusion has occurred.
    Type: Application
    Filed: September 12, 2013
    Publication date: March 12, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Han-Wei Yang, Yi-Ruei Lin, Chen-Chung Lai, Kang-Min Kuo, Bor-Zen Tien
  • Publication number: 20150054163
    Abstract: A semiconductor device having enhanced passivation integrity is disclosed. The device includes a substrate, a first layer, and a metal layer. The first layer is formed over the substrate. The first layer includes a via opening and a tapered portion proximate to the via opening. The metal layer is formed over the via opening and the tapered portion of the first layer. The metal layer is substantially free from gaps and voids.
    Type: Application
    Filed: August 23, 2013
    Publication date: February 26, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ying-Chieh Liao, Han-Wei Yang, Chen-Chung Lai, Kang-Min Kuo, Bor-Zen Tien
  • Publication number: 20150048507
    Abstract: An integrated circuit includes a p-type region formed beneath a surface of a semiconductor substrate, and an n-type region formed beneath the surface of the semiconductor substrate. The n-type region meets the p-type region at a p-n junction. A diffusion barrier structure, which is beneath the surface of the semiconductor substrate and extends along a side of the p-n junction, limits lateral diffusion between the p-type region and n-type region.
    Type: Application
    Filed: August 13, 2013
    Publication date: February 19, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co. Ltd.
    Inventors: Chin-Chia Chang, Han-Wei Yang, Chen-Chung Lai, Kang-Min Kuo, Bor-Zen Tien
  • Publication number: 20150001592
    Abstract: A semiconductor device with the metal fuse is provided. The metal fuse connects an electronic component (e.g., a transistor) and a existing dummy feature which is grounded. The protection of the metal fuse can be designed to start at the beginning of the metallization formation processes. The grounded dummy feature provides a path for the plasma charging to the ground during the entire back end of the line process. The metal fuse is a process level protection as opposed to the diode, which is a circuit level protection. As a process level protection, the metal fuse protects subsequently-formed circuitry. In addition, no additional active area is required for the metal fuse in the chip other than internal dummy patterns that are already implemented.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., LTD.
    Inventors: Chen-Chung Lai, Kang-Min Kuo, Yen-Ming Peng, Gwo-Chyuan Kuoh, Han-Wei Yang, Yi-Ruei Lin, Chin-Chia Chang, Ying-Chieh Liao, Che-Chia Hsu, Bor-Zen Tien
  • Publication number: 20140374832
    Abstract: The present disclosure relates to an integrated chip having one or more back-end-of-the-line (BEOL) selectivity stress films that apply a stress that improves the performance of semiconductor devices underlying the BEOL selectivity stress films, and an associated method of formation. In some embodiments, the integrated chip has a semiconductor substrate with one or more semiconductor devices having a first device type. A stress transfer element is located within a back-end-of-the-line stack at a position over the one or more semiconductor devices. A selectivity stress film is located over the stress transfer element. The selectivity stress film induces a stress upon the stress transfer element, wherein the stress has a compressive or tensile state depending on the first device type of the one or more semiconductor devices. The stress acts upon the one or more semiconductor devices to improve their performance.
    Type: Application
    Filed: June 24, 2013
    Publication date: December 25, 2014
    Inventors: Gwo-Chyuan Kuoh, Chen-Chung Lai, Kang-Min Kuo, Bor-Zen Tien, Yen-Ming Peng
  • Publication number: 20140353833
    Abstract: The present disclosure relates to an integrated chip having one or more back-end-of-the-line (BEOL) stress compensation layers that reduce stress on one or more underlying semiconductor devices, and an associated method of formation. In some embodiments, the integrated chip has a semiconductor substrate with one or more semiconductor devices. A stressed element is located within a back-end-of-the-line stack at a position overlying the one or more semiconductor devices. A stressing layer is located over the stressed element induces a stress upon the stressed element. A stress compensation layer, located over the stressed element, provides a counter-stress to reduce the stress induced on the stressed element by the stressing layer. By reducing the stress induced on the stressed element, stress on the semiconductor substrate is reduced, improving uniformity of performance of the one or more semiconductor devices.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 4, 2014
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yen-Ming Peng, Chen-Chung Lai, Kang-Min Kuo, Bor-Zen Tien