Patents by Inventor Cheryl Heiner

Cheryl Heiner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11155865
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: October 26, 2021
    Assignee: GENAPSYS, INC.
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Patent number: 11021748
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: June 1, 2021
    Assignee: GENAPSYS, INC.
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Patent number: 10793903
    Abstract: Methods, compositions, and systems are provided for characterization of modified nucleic acids. In certain preferred embodiments, single molecule sequencing methods are provided for identification of modified nucleotides within nucleic acid sequences. Modifications detectable by the methods provided herein include chemically modified bases, enzymatically modified bases, abasic sites, non-natural bases, secondary structures, and agents bound to a template nucleic acid.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: October 6, 2020
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Benjamin Flusberg, Stephen Turner, Jon Sorenson, Kevin Travers, Cheryl Heiner
  • Patent number: 10787705
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: September 29, 2020
    Assignee: GENAPSYS, INC.
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Publication number: 20200255893
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Application
    Filed: October 10, 2019
    Publication date: August 13, 2020
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Patent number: 10612091
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: April 7, 2020
    Assignee: GENAPSYS, INC.
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Patent number: 10494672
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: December 3, 2019
    Assignee: GENAPSYS, INC.
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Publication number: 20190177790
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Application
    Filed: February 22, 2019
    Publication date: June 13, 2019
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T, Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Publication number: 20190177791
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Application
    Filed: February 22, 2019
    Publication date: June 13, 2019
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Patent number: 10294523
    Abstract: Methods, compositions, and systems are provided for characterization of modified nucleic acids. In certain preferred embodiments, single molecule sequencing methods are provided for identification of modified nucleotides within nucleic acid sequences. Modifications detectable by the methods provided herein include chemically modified bases, enzymatically modified bases, abasic sites, non-natural bases, secondary structures, and agents bound to a template nucleic acid.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: May 21, 2019
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Benjamin Flusberg, Jonas Korlach, Jeffrey Wegener, Tyson A. Clark, Igor Drasko Vilfan, Andrey Kislyuk, Stephen Turner, Jon Sorenson, Kevin Travers, Cheryl Heiner, Austin B. Tomaney, Patrick Marks, Jessica Lee, Lei Jia, Dale Webster, John Lyle, Jeremiah Hanes
  • Patent number: 10266892
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: April 23, 2019
    Assignee: GENAPSYS, INC.
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Patent number: 10260095
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: April 16, 2019
    Assignee: GENAPSYS, INC.
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Publication number: 20190062833
    Abstract: Methods, compositions, and systems are provided that allow for reliable sequencing of the initial sequence region of a sequence of interest. The methods of the invention allow for more reliable barcoding of subpopulations of nucleic acids to be sequenced.
    Type: Application
    Filed: August 21, 2018
    Publication date: February 28, 2019
    Inventors: Tyson A. Clark, Jonas Korlach, Cheryl Heiner, Kevin Travers, Erik Miller
  • Publication number: 20180327837
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Application
    Filed: July 18, 2018
    Publication date: November 15, 2018
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Publication number: 20180282806
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Application
    Filed: June 13, 2018
    Publication date: October 4, 2018
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Publication number: 20180282805
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Application
    Filed: June 13, 2018
    Publication date: October 4, 2018
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Patent number: 10081836
    Abstract: Methods, compositions, and systems are provided that allow for reliable sequencing of the initial sequence region of a sequence of interest. The methods of the invention allow for more reliable barcoding of subpopulations of nucleic acids to be sequenced.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: September 25, 2018
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Tyson A. Clark, Jonas Korlach, Cheryl Heiner, Kevin Travers, Erik Miller
  • Publication number: 20180245150
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Application
    Filed: February 14, 2018
    Publication date: August 30, 2018
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Publication number: 20180211003
    Abstract: Methods and systems for single molecule sequencing using concatemers of copies of sense and antisense strands. Concatemers are provided, for example, by carrying out rolling circle amplification on a circular molecule having sense and antisense regions to produce repeated copies of the sense and antisense regions connected by linking regions. The circular molecules can be produced by ligating hairpin adapters to each end of a double-stranded nucleic acid having a sense and antisense strand. The ligations can be carried out, for example using blunt end ligation. In some cases, a single molecule consensus sequence for a single template molecule is obtained. A single read from each template molecule can be obtained by comparing the sequence information of the sense and antisense regions.
    Type: Application
    Filed: January 19, 2018
    Publication date: July 26, 2018
    Inventors: Kevin Travers, Geoff Otto, Stephen Turner, Cheryl Heiner, Congcong Ma
  • Patent number: 9951383
    Abstract: Methods, compositions, and systems are provided for characterization of modified nucleic acids. In certain preferred embodiments, single molecule sequencing methods are provided for identification of modified nucleotides within nucleic acid sequences. Methods are provided that include linking forward and reverse strands of a double stranded segment to form circular template molecules, and obtaining sequence data from the circular template molecule to identify modified bases, for example including the use of bisulfite treatment. Modifications detectable by the methods provided herein include chemically modified bases, enzymatically modified bases, abasic sites, non-natural bases, secondary structures, and agents bound to a template nucleic acid.
    Type: Grant
    Filed: September 21, 2016
    Date of Patent: April 24, 2018
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Stephen Turner, Jon Sorenson, Kevin Travers, Cheryl Heiner