Patents by Inventor CHEW-YUEN YOUNG

CHEW-YUEN YOUNG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10510776
    Abstract: A semiconductor device includes a substrate, a pair of transistor devices and an isolation region. The pair of transistor devices are disposed over the substrate. Each of the pair of the transistor devices includes a channel, a gate electrode over the channel, and a source/drain region alongside the gate electrode. The isolation region is disposed between the source/drain regions of the pair of the transistor devices. The isolation region has a first doping type opposite to a second doping type of the source/drain regions.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: December 17, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Jack Liu, Jiann-Tyng Tzeng, Chih-Liang Chen, Chew-Yuen Young, Sing-Kai Huang, Ching-Fang Huang
  • Patent number: 10510599
    Abstract: An embodiment of a semiconductor switch structure includes source contacts, drain contacts, gates and fins. The contacts and gates are elongated in a first direction and are spaced apart from each other in a second direction perpendicular to the first direction. The gates are interspersed between the contacts. The fins underlie both the contacts and the gates. The fins are elongated in the second direction and are spaced apart from each other in the first direction. A contact via extends through one of the contacts without contacting a gate or a fin. A gate via extends through one of the gates without contacting a contact or a fin. A contact-gate via is in contact with both a contact and a gate but not a fin.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: December 17, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Kam-Tou Sio, Chih-Liang Chen, Charles Chew-Yuen Young, Ho Che Yu
  • Patent number: 10503863
    Abstract: A method of forming an integrated circuit includes generating, by a processor, a layout design of the integrated circuit based on a set of design rules and manufacturing the integrated circuit based on the layout design. The integrated circuit has a first gate. Generating the layout design includes generating a set of gate layout patterns, generating a cut feature layout pattern and generating a first via layout pattern. The cut feature layout pattern extends in a first direction, is located on the first layout level and overlaps at least a first gate layout pattern. The set of gate layout patterns extends in a second direction and is located on a first layout level. The first via layout pattern is over the first gate layout pattern, and is separated in the second direction from the cut feature layout pattern by a first distance. The first distance satisfies a first design rule.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: December 10, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shih-Wei Peng, Chih-Liang Chen, Charles Chew-Yuen Young, Hui-Zhong Zhuang, Jiann-Tyng Tzeng, Shun Li Chen, Wei-Cheng Lin
  • Publication number: 20190371784
    Abstract: A method of generating a layout diagram includes: generating first and second conductor shapes; generating first, second and third cap shapes correspondingly over the first and second conductor shapes; arranging a corresponding one of the second conductor shapes to be interspersed between each pair of neighboring ones of the first conductor shapes; generating first cut patterns over selected portions of corresponding ones of the first cap shapes; and generating second cut patterns over selected portions of corresponding ones of the second cap shapes. In some circumstances, the first cut patterns are designated as selective for a first etch sensitivity corresponding to the first cap shapes; and the second cut patterns are designated as selective for a second etch sensitivity corresponding to the second cap shapes.
    Type: Application
    Filed: August 19, 2019
    Publication date: December 5, 2019
    Inventors: Kam-Tou SIO, Chih-Liang CHEN, Chih-Ming LAI, Charles Chew-Yuen YOUNG, Hui-Ting YANG, Ko-Bin KAO, Ru-Gun LIU, Shun Li CHEN
  • Publication number: 20190371943
    Abstract: In some embodiments, a semiconductor device is provided. The semiconductor device includes a semiconductor substrate having a first semiconductor material layer separated from a second semiconductor material layer by an insulating layer. A source region and a drain region are disposed in the first semiconductor material layer and spaced apart. A gate electrode is disposed over the first semiconductor material layer between the source region and the drain region. A first doped region having a first doping type is disposed in the second semiconductor material layer, where the gate electrode directly overlies the first doped region. A second doped region having a second doping type different than the first doping type is disposed in the second semiconductor material layer, where the second doped region extends beneath the first doped region and contacts opposing sides of the first doped region.
    Type: Application
    Filed: May 30, 2018
    Publication date: December 5, 2019
    Inventors: Jack Liu, Charles Chew-Yuen Young
  • Patent number: 10468349
    Abstract: Examples of an integrated circuit a having an advanced two-dimensional (2D) metal connection with metal cut and methods of fabricating the same are provided. An example method for fabricating a conductive interconnection layer of an integrated circuit may include: patterning a conductive connector portion on the conductive interconnection layer of the integrated circuit using extreme ultraviolet (EUV) lithography, wherein the conductive connector portion is patterned to extend across multiple semiconductor structures in a different layer of the integrated circuit; and cutting the conductive connector portion into a plurality of conductive connector sections, wherein the conductive connector portion is cut by removing conductive material from the metal connector portion at one or more locations between the semiconductor structures.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: November 5, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chih-Liang Chen, Cheng-Chi Chuang, Chih-Ming Lai, Chia-Tien Wu, Charles Chew-Yuen Young, Hui-Ting Yang, Jiann-Tyng Tzeng, Kam-Tou Sio, Ru-Gun Liu, Shun Li Chen, Shih-Wei Peng, Tien-Lu Lin
  • Patent number: 10467374
    Abstract: A method for calculating cell edge leakage in a semiconductor device comprising performing a device leakage simulation to obtain leakage information for different cell edge conditions and providing attributes associated with cell edges in the semiconductor device. The method further comprises performing an analysis to identify cell abutment cases present in the semiconductor device and calculating the leakage of the semiconductor device based at least in part on probabilities associated with the cell abutment cases and the simulated leakage values obtained from the device leakage simulation.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: November 5, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Shih-Wei Peng, Charles Chew-Yuen Young, Jiann-Tyng Tzeng, Kam-Tou Sio
  • Publication number: 20190325109
    Abstract: A method of fabricating an integrated circuit is disclosed. The method includes defining a via grid, generating a first layout design of the integrated circuit based on at least the via grid or design criteria, generating a standard cell layout design of the integrated circuit, generating a via color layout design of the integrated circuit based on the first layout design and the standard cell layout design, performing a color check on the via color layout design based on design rules, and fabricating the integrated circuit based on at least the via color layout design. The first layout design has a first set of vias arranged in first rows and first columns based on the via grid. The standard cell layout design has standard cells and a second set of vias arranged in the standard cells. The via color layout design has a third set of vias.
    Type: Application
    Filed: July 1, 2019
    Publication date: October 24, 2019
    Inventors: Wei-Cheng LIN, Chih-Liang CHEN, Chih-Ming LAI, Charles Chew-Yuen YOUNG, Jiann-Tyng TZENG, Kam-Tou SIO, Ru-Gun LIU, Shih-Wei PENG, Wei-Chen CHIEN
  • Patent number: 10446406
    Abstract: A method of manufacturing a semiconductor device includes depositing a first material on a substrate, depositing on the substrate a second material that has an etch selectivity different from an etch selectively of the first material, depositing a spacer material on the first and second material, and etching the substrate using the spacer material as an etch mask to form a fin under the first material and a fin under the second material.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: October 15, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Lei-Chun Chou, Chih-Liang Chen, Chih-Ming Lai, Charles Chew-Yuen Young, Chin-Yuan Tseng, Hsin-Chih Chen, Shi Ning Ju, Jiann-Tyng Tzeng, Kam-Tou Sio, Ru-Gun Liu, Wei-Cheng Lin, Wei-Liang Lin
  • Publication number: 20190305006
    Abstract: A semiconductor device includes a substrate, a pair of transistor devices and an isolation region. The pair of transistor devices are disposed over the substrate. Each of the pair of the transistor devices includes a channel, a gate electrode over the channel, and a source/drain region alongside the gate electrode. The isolation region is disposed between the source/drain regions of the pair of the transistor devices. The isolation region has a first doping type opposite to a second doping type of the source/drain regions.
    Type: Application
    Filed: March 29, 2018
    Publication date: October 3, 2019
    Inventors: JACK LIU, JIANN-TYNG TZENG, CHIH-LIANG CHEN, CHEW-YUEN YOUNG, SING-KAI HUANG, CHING-FANG HUANG
  • Patent number: 10388644
    Abstract: A method of manufacturing conductors for a semiconductor device, the method comprising: forming a structure on a base; and eliminating selected portions of members of a first set and selected portions of members of a second set from the structure. The structure includes: capped first conductors arranged parallel to a first direction; and capped second conductors arranged parallel to and interspersed with the capped first conductors. The capped first conductors are organized into at least first and second sets. Each member of the first set has a first cap with a first etch sensitivity. Each member of the second set has a second cap with a second etch sensitivity. Each of the capped second conductors has a third etch sensitivity. The first, second and third etch sensitivities are different.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: August 20, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kam-Tou Sio, Chih-Liang Chen, Chih-Ming Lai, Charles Chew-Yuen Young, Hui-Ting Yang, Ko-Bin Kao, Ru-Gun Liu, Shun Li Chen
  • Publication number: 20190244901
    Abstract: The present disclosure, in some embodiments, relates to a method of forming an integrated chip. The method includes forming a plurality of gate structures extending in a first direction over a substrate between a plurality of source/drain regions. A lower power rail is formed extending in a second direction perpendicular to the first direction. A first connection pin is formed to be electrically coupled to one of the plurality of source/drain regions and to the lower power rail. The first connection pin is formed according to a cut mask having cut regions that define opposing ends of the first connection pin. An upper power rail is formed directly over the lower power rail and extending in the second direction. The upper power rail is electrically coupled to the first connection pin.
    Type: Application
    Filed: April 12, 2019
    Publication date: August 8, 2019
    Inventors: Shih-Wei Peng, Chih-Ming Lai, Chun-Kuang Chen, Chih-Liang Chen, Charles Chew-Yuen Young, Jiann-Tyng Tzeng, Kam-Tou Sio, Ru-Gun Liu, Yung-Sung Yen
  • Patent number: 10366200
    Abstract: A method of forming a layout design for fabricating an integrated circuit is disclosed. The method includes generating a first layout of the integrated circuit based on design criteria, generating a standard cell layout of the integrated circuit, generating a via color layout of the integrated circuit based on the first layout and the standard cell layout and performing a color check on the via color layout based on design rules. The first layout having a first set of vias arranged in first rows and first columns. The standard cell layout having standard cells and a second set of vias arranged in the standard cells. The via color layout having a third set of vias. The third set of vias including a portion of the second set of vias and corresponding locations, and color of corresponding sub-set of vias.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: July 30, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei-Cheng Lin, Chih-Liang Chen, Chih-Ming Lai, Charles Chew-Yuen Young, Jiann-Tyng Tzeng, Kam-Tou Sio, Ru-Gun Liu, Shih-Wei Peng, Wei-Chen Chien
  • Publication number: 20190164883
    Abstract: A semiconductor structure is disclosed that includes a first conductive line, a first conductive segment, a second conductive segment, and a gate. The first conductive segment is electrically coupled to the first conductive line through a conductive via. The second conductive segment is configured to electrically couple the first conductive segment with a third conductive segment disposed over an active area. The gate is disposed under the second conductive segment and disposed between first conductive segment and the third conductive segment. The first conductive line and the second conductive segment are disposed at two sides of the conductive via respectively.
    Type: Application
    Filed: January 31, 2019
    Publication date: May 30, 2019
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Meng-Hung SHEN, Chih-Liang CHEN, Charles Chew-Yuen YOUNG, Jiann-Tyng TZENG, Kam-Tou SIO, Wei-Cheng LIN
  • Publication number: 20190164882
    Abstract: A semiconductor device includes a substrate, a dielectric region, a plurality of conductive regions, a first conductive rail and a conductive structure. The dielectric region is situated on the substrate. The plurality of conductive regions are situated on the dielectric region. The first conductive rail is situated within the dielectric region, and is electrically connected to a first conductive region of the plurality of conductive regions. The conductive structure is arranged to penetrate through the substrate and formed under the first conductive rail. The conductive structure is electrically connected to the first conductive rail.
    Type: Application
    Filed: May 30, 2018
    Publication date: May 30, 2019
    Inventors: CHIH-LIANG CHEN, LEI-CHUN CHOU, JACK LIU, KAM-TOU SIO, HUI-TING YANG, WEI-CHENG LIN, CHUN-HUNG LIOU, JIANN-TYNG TZENG, CHEW-YUEN YOUNG
  • Publication number: 20190165177
    Abstract: The present disclosure describes various non-planar semiconductor devices, such as fin field-effect transistors (finFETs) to provide an example, having one or more metal rail conductors and various methods for fabricating these non-planar semiconductor devices. In some situations, the one or more metal rail conductors can be electrically connected to gate, source, and/or drain regions of these various non-planar semiconductor devices. In these situations, the one or more metal rail conductors can be utilized to electrically connect the gate, the source, and/or the drain regions of various non-planar semiconductor devices to other gate, source, and/or drain regions of various non-planar semiconductor devices and/or other semiconductor devices. However, in other situations, the one or more metal rail conductors can be isolated from the gate, the source, and/or the drain regions these various non-planar semiconductor devices.
    Type: Application
    Filed: October 31, 2018
    Publication date: May 30, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Liang CHEN, Chih-Ming LAI, Ching-Wei TSAI, Charles Chew-Yuen YOUNG, Jiann-Tyng TZENG, Kuo-Cheng CHING, Ru-Gun LIU, Wei-Hao WU, Yi-Hsiung LIN, Chia-Hao CHANG, Lei-Chun CHOU
  • Publication number: 20190165178
    Abstract: The present disclosure describes various non-planar semiconductor devices, such as fin field-effect transistors (finFETs) to provide an example, having one or more metal rail conductors and various methods for fabricating these non-planar semiconductor devices. In some situations, the one or more metal rail conductors can be electrically connected to gate, source, and/or drain regions of these various non-planar semiconductor devices. In these situations, the one or more metal rail conductors can be utilized to electrically connect the gate, the source, and/or the drain regions of various non-planar semiconductor devices to other gate, source, and/or drain regions of various non-planar semiconductor devices and/or other semiconductor devices. However, in other situations, the one or more metal rail conductors can be isolated from the gate, the source, and/or the drain regions these various non-planar semiconductor devices.
    Type: Application
    Filed: October 31, 2018
    Publication date: May 30, 2019
    Inventors: Chih-Liang CHEN, Charles Chew-Yuen Young, Hui-Ting Yang, Jiann-Tyng Tzeng, Kam-Tou Sio, Shih-Wei Peng, Wei-Cheng Lin, Lei-Chun Chou
  • Publication number: 20190164805
    Abstract: A semiconductor device includes a buried metal line disposed in a semiconductor substrate, a first dielectric material on a first sidewall of the buried metal line and a second dielectric material on a second sidewall of the buried metal line, a first multiple fins disposed proximate the first sidewall of the buried metal line, a second multiple fins disposed proximate the second sidewall of the buried metal line, a first metal gate structure over the first multiple fins and over the buried metal line, wherein the first metal gate structure extends through the first dielectric material to contact the buried metal line, and a second metal gate structure over the second multiple fins and over the buried metal line.
    Type: Application
    Filed: November 14, 2018
    Publication date: May 30, 2019
    Inventors: Lei-Chun Chou, Chih-Liang Chen, Jiann-Tyng Tzeng, Chih-Ming Lai, Ru-Gun Liu, Charles Chew-Yuen Young
  • Publication number: 20190164962
    Abstract: An integrated circuit device includes: a first fin structure disposed on a substrate in a first direction; a second fin structure disposed on the substrate and aligned in the first direction; a third fin structure disposed on the substrate and aligned in the first direction; a fourth fin structure disposed on the substrate and aligned in the first direction; and a first conductive line aligned in a second direction arranged to wrap a first portion, a second portion, a third portion, and a fourth portion of the first fin structure, the second fin structure, the third fin structure, and the fourth fin structure respectively. A first distance between the first fin structure and the second fin structure is different from a second distance between the third fin structure and the fourth fin structure.
    Type: Application
    Filed: June 14, 2018
    Publication date: May 30, 2019
    Inventors: KAM-TOU SIO, SHANG-WEI FANG, JIANN-TYNG TZENG, CHEW-YUEN YOUNG
  • Patent number: 10297588
    Abstract: A semiconductor device includes at least one first gate strip, at least one second gate strip, at least one first conductive line and at least one first conductive via. An end surface of the at least one first gate strip and an end surface of the at least one second gate strip are opposite each other. The at least one first conductive line is over the at least one first gate strip and the at least one second gate strip and across the end surface of the at least one first gate strip and the end surface of the at least one second gate strip. The at least one first conductive via connects the at least one first conductive line and the at least one first gate strip.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: May 21, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Cheng Lin, Hui-Ting Yang, Shih-Wei Peng, Jiann-Tyng Tzeng, Charles Chew-Yuen Young, Chih-Ming Lai