Patents by Inventor CHI-CHUNG KEI

CHI-CHUNG KEI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200270751
    Abstract: An enclosed-channel reactor system is provided, which includes: a reactor body having a plurality of enclosed channels therein; an upper cap disposed at one end of the reactor body and having an inlet port communicating with the plurality of enclosed channels; a lower cap disposed at the other end of the reactor body opposite to the upper cap and having an outlet port communicating with the plurality of enclosed channels; and at least a conduit plate disposed between the upper cap and the reactor body for guiding a precursor injected from the inlet port into the plurality of enclosed channels uniformly.
    Type: Application
    Filed: May 1, 2020
    Publication date: August 27, 2020
    Inventors: Tsong-Pyng Perng, Chi-Chung Kei, Chien-Pao Lin, Mrinalini Mishra, Sheng-Hsin Huang, Kuang-I Liu, Yu-Hsuan Yu
  • Publication number: 20200185259
    Abstract: A semiconductor reaction device and a semiconductor reaction method are disclosed. The semiconductor reaction device includes a vacuum chamber, a stage unit, a heating unit, and a first lifting mechanism. The stage unit carries a substrate. When the stage unit drives the substrate to rise, the substrate separates the vacuum chamber to form a reaction space and a bottom space. The heating unit is disposed in the vacuum chamber. The heating unit and the substrate are located on opposite sides of the stage unit. The first lifting mechanism connects with the heating unit so as to move the heating unit, so that the heating unit is movable relative to the stage unit. When the substrate rises to form the reaction space, the distance between the heating unit and the substrate is changed by the first lifting mechanism, thereby changing the temperature of the substrate.
    Type: Application
    Filed: November 20, 2019
    Publication date: June 11, 2020
    Inventors: Chi-Chung KEI, Chan-Yuen CHANG, Chien-Lin CHEN, Po-Heng LIU, Yu-Chiao LIN
  • Patent number: 10676824
    Abstract: An enclosed-channel reactor system is provided, which includes: a reactor body having a plurality of enclosed channels therein; an upper cap disposed at one end of the reactor body and having an inlet port communicating with the plurality of enclosed channels; a lower cap disposed at the other end of the reactor body opposite to the upper cap and having an outlet port communicating with the plurality of enclosed channels; and at least a conduit plate disposed between the upper cap and the reactor body for guiding a precursor injected from the inlet port into the plurality of enclosed channels uniformly.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: June 9, 2020
    Assignee: National Tsing Hua University
    Inventors: Tsong-Pyng Perng, Chi-Chung Kei, Chien-Pao Lin, Mrinalini Mishra, Sheng-Hsin Huang, Kuang-I Liu, Yu-Hsuan Yu
  • Patent number: 9901917
    Abstract: The present invention provides methods and designs of enclosed-channel reactor system for manufacturing catalysts or supports. Both of the configuration designs force the gaseous precursors and purge gas flow through the channel surface of reactor. The precursors will transform to thin film or particle catalysts or supports under adequate reaction temperature, working pressure and gas concentration. The reactor body is either sealed or enclosed for isolation from atmosphere. Another method using super ALD cycles is also proposed to grow alloy catalysts or supports with controllable concentration. The catalysts prepared by the method and system in the present invention are noble metals, such as platinum, palladium, rhodium, ruthenium, iridium and osmium, or transition metals such as iron, silver, cobalt, nickel and tin, while supports are silicon oxide, aluminum oxide, zirconium oxide, cerium oxide or magnesium oxide, or refractory metals, which can be chromium, molybdenum, tungsten or tantalum.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: February 27, 2018
    Assignee: NATIONAL APPLIED RESEARCH LABORATORIES
    Inventors: Chi-Chung Kei, Bo-Heng Liu, Chien-Pao Lin, Chien-Nan Hsiao, Yang-Chih Hsueh, Tsong-Pyng Perng
  • Publication number: 20170175268
    Abstract: An enclosed-channel reactor system is provided, which includes: a reactor body having a plurality of enclosed channels therein; an upper cap disposed at one end of the reactor body and having an inlet port communicating with the plurality of enclosed channels; a lower cap disposed at the other end of the reactor body opposite to the upper cap and having an outlet port communicating with the plurality of enclosed channels; and at least a conduit plate disposed between the upper cap and the reactor body for guiding a precursor injected from the inlet port into the plurality of enclosed channels uniformly.
    Type: Application
    Filed: April 18, 2016
    Publication date: June 22, 2017
    Inventors: Tsong-Pyng Perng, Chi-Chung Kei, Chien-Pao Lin, Mrinalini Mishra, Sheng-Hsin Huang, Kuang-I Liu, Yu-Hsuan Yu
  • Publication number: 20160256863
    Abstract: The present invention provides methods and designs of enclosed-channel reactor system for manufacturing catalysts or supports. Both of the configuration designs force the gaseous precursors and purge gas flow through the channel surface of reactor. The precursors will transform to thin film or particle catalysts or supports under adequate reaction temperature, working pressure and gas concentration. The reactor body is either sealed or enclosed for isolation from atmosphere. Another method using super ALD cycles is also proposed to grow alloy catalysts or supports with controllable concentration. The catalysts prepared by the method and system in the present invention are noble metals, such as platinum, palladium, rhodium, ruthenium, iridium and osmium, or transition metals such as iron, silver, cobalt, nickel and tin, while supports are silicon oxide, aluminum oxide, zirconium oxide, cerium oxide or magnesium oxide, or refractory metals, which can be chromium, molybdenum, tungsten or tantalum.
    Type: Application
    Filed: May 17, 2016
    Publication date: September 8, 2016
    Inventors: Chi-Chung Kei, Bo-Heng Liu, Chien-Pao Lin, Chien-Nan Hsiao, Yang-Chih Hsueh, Tsong-Pyng Perng
  • Patent number: 9404181
    Abstract: A plasma enhanced atomic layer deposition (PEALD) system used to form thin films on substrates includes a plasma chamber, a processing chamber, two or more ring units and a control piece. The plasma chamber includes an outer and an inner quartz tubular units, whose central axes are aligned with each other. Therefore, plasma is held and concentrated in an annular space formed between the outer and outer quartz tubular units. Due to the first and second through holes, the plasma flow may be more evenly distributed on most of the surface of the substrate to form evenly distributed thin films and nano particles on the substrate. In addition, due to the alignment and misalignment between the first and second through holes, the plasma generated in the plasma chamber may be swiftly allowed or disallowed to enter to the processing chamber to prevent the precursor from forming a CVD.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: August 2, 2016
    Assignee: NATIONAL APPLIED RESEARCH LABORATORIES
    Inventors: Bo-Heng Liu, Chi-Chung Kei, Meng-Yen Tsai, Wen-Hao Cho, Chih-Chieh Yu, Chien-Nan Hsiao, Da-Ren Liu
  • Patent number: 9381509
    Abstract: The present invention provides methods and designs of enclosed-channel reactor system for manufacturing catalysts or supports. Both of the configuration designs force the gaseous precursors and purge gas flow through the channel surface of reactor. The precursors will transform to thin film or particle catalysts or supports under adequate reaction temperature, working pressure and gas concentration. The reactor body is either sealed or enclosed for isolation from atmosphere. Another method using super ALD cycles is also proposed to grow alloy catalysts or supports with controllable concentration. The catalysts prepared by the method and system in the present invention are noble metals, such as platinum, palladium, rhodium, ruthenium, iridium and osmium, or transition metals such as iron, silver, cobalt, nickel and tin, while supports are silicon oxide, aluminum oxide, zirconium oxide, cerium oxide or magnesium oxide, or refractory metals, which can be chromium, molybdenum, tungsten or tantalum.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: July 5, 2016
    Assignee: NATIONAL APPLIED RESEARCH LABORATORIES
    Inventors: Chi-Chung Kei, Bo-Heng Liu, Chien-Pao Lin, Chien-Nan Hsiao, Yang-Chih Hsueh, Tsong-Pyng Perng
  • Publication number: 20140140904
    Abstract: The present invention provides methods and designs of enclosed-channel reactor system for manufacturing catalysts or supports. Both of the configuration designs force the gaseous precursors and purge gas flow through the channel surface of reactor. The precursors will transform to thin film or particle catalysts or supports under adequate reaction temperature, working pressure and gas concentration. The reactor body is either sealed or enclosed for isolation from atmosphere. Another method using super ALD cycles is also proposed to grow alloy catalysts or supports with controllable concentration. The catalysts prepared by the method and system in the present invention are noble metals, such as platinum, palladium, rhodium, ruthenium, iridium and osmium, or transition metals such as iron, silver, cobalt, nickel and tin, while supports are silicon oxide, aluminum oxide, zirconium oxide, cerium oxide or magnesium oxide, or refractory metals, which can be chromium, molybdenum, tungsten or tantalum.
    Type: Application
    Filed: July 23, 2013
    Publication date: May 22, 2014
    Applicant: National Applied Research Laboratories
    Inventors: Chi-Chung Kei, Bo-Heng Liu, Chien-Pao Lin, Chien-Nan Hsiao, Yang-Chih Hsueh, Tsong-Pyng Perng
  • Publication number: 20130146134
    Abstract: The present invention discloses a solar cell with a nanolaminated transparent electrode and a method of manufacturing the same. The solar cell comprises a substrate, a first electrode layer deposited on the substrate, a photovoltaic layer deposited on the first electrode layer, and a second electrode layer deposited on the photovoltaic layer. Wherein, at least one of the first and second electrode layers is a nanolaminated transparent electrode prepared by using atomic layer deposition (ALD). The nanolaminated transparent electrode may serve as both of the transparent electrode and the anti-reflective layer and is able to maintain good transmittance in infrared wavelength.
    Type: Application
    Filed: February 22, 2012
    Publication date: June 13, 2013
    Applicant: National Applied Research Laboratories
    Inventors: CHIEN-NAN HSIAO, Chih-Chieh Yu, Po-Kai Chiu, Chi-Chung Kei, Don-Yau Chiang
  • Publication number: 20130125815
    Abstract: A plasma enhanced atomic layer deposition (PEALD) system used to form thin films on substrates includes a plasma chamber, a processing chamber, two or more ring units and a control piece. The plasma chamber includes an outer and an inner quartz tubular units, whose central axes are aligned with each other. Therefore, plasma is held and concentrated in a cylindrical space formed between the outer and outer quartz tubular units. Due to the first and second through holes, the plasma flow may be more evenly distributed on most of the surface of the substrate to form evenly distributed thin films and nano particles on the substrate. In addition, due to the alignment and misalignment between the first and second through holes, the plasma generated in the plasma chamber may be swiftly allowed or disallowed to enter to the processing chamber to prevent the precursor from forming a CVD.
    Type: Application
    Filed: March 6, 2012
    Publication date: May 23, 2013
    Inventors: Bo-Heng Liu, Chi-Chung Kei, Meng-Yen Tsai, Wen-Hao Cho, Chih-Chieh Yu, Chien-Nan Hsiao, Da-Ren Liu
  • Publication number: 20130045374
    Abstract: The present invention discloses a nano-laminated film with transparent conductive property and water-vapor resistance function and method thereof. The nano-laminated film comprises a plurality of first metal oxide layers and a plurality of second metal oxide layers. Wherein, the first metal layers and the second metal layers are made of different materials, and there is a spinel phase formed between the first metal layers and the second metal layers.
    Type: Application
    Filed: April 27, 2012
    Publication date: February 21, 2013
    Applicant: NATIONAL APPLIED RESEARCH LABORATORIES
    Inventors: CHIH-CHIEH YU, MENG-YEN TSAI, CHI-CHUNG KEI, BO-HENG LIU, CHIEN-NAN HSIAO