Patents by Inventor Chi-yuan Shih

Chi-yuan Shih has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210383972
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip including a dielectric structure sandwiched between a first electrode and a bottom electrode. A passivation layer overlies the second electrode and the dielectric structure. The passivation layer comprises a horizontal surface vertically below a top surface of the passivation layer. The horizontal surface is disposed above a top surface of the dielectric structure.
    Type: Application
    Filed: August 25, 2021
    Publication date: December 9, 2021
    Inventors: Anderson Lin, Chun-Ren Cheng, Chi-Yuan Shih, Shih-Fen Huang, Yi-Chuan Teng, Yi Heng Tsai, You-Ru Lin, Yen-Wen Chen, Fu-Chun Huang, Fan Hu, Ching-Hui Lin, Yan-Jie Liao
  • Patent number: 11158743
    Abstract: A fin field effect transistor (FinFET), and a method of forming, is provided. The FinFET has a fin having one or more semiconductor layers epitaxially grown on a substrate. A first passivation layer is formed over the fins, and isolation regions are formed between the fins. An upper portion of the fins are reshaped and a second passivation layer is formed over the reshaped portion. Thereafter, a gate structure may be formed over the fins and source/drain regions may be formed.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: October 26, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yen-Yu Chen, Chi-Yuan Shih, Chi-Wen Liu
  • Patent number: 11107630
    Abstract: Various embodiments of the present disclosure are directed towards a piezoelectric metal-insulator-metal (MIM) device including a piezoelectric structure between a top electrode and a bottom electrode. The piezoelectric layer includes a top region overlying a bottom region. Outer sidewalls of the bottom region extend past outer sidewalls of the top region. The outer sidewalls of the top region are aligned with outer sidewalls of the top electrode. The piezoelectric layer is configured to help limit delamination of the top electrode from the piezoelectric layer.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: August 31, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Anderson Lin, Chun-Ren Cheng, Chi-Yuan Shih, Shih-Fen Huang, Yi-Chuan Teng, Yi Heng Tsai, You-Ru Lin, Yen-Wen Chen, Fu-Chun Huang, Fan Hu, Ching-Hui Lin, Yan-Jie Liao
  • Patent number: 10943995
    Abstract: A method includes forming a semiconductor fin, performing a first passivation step on a top surface of the semiconductor fin using a first passivation species, and performing a second passivation step on sidewalls of the semiconductor fin using a second passivation species different from the first passivation species. A gate stack is formed on a middle portion of the semiconductor fin. A source or a drain region is formed on a side of the gate stack, wherein the source or drain region and the gate stack form a Fin Field-Effect Transistor (FinFET).
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: March 9, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Yuan Shih, Wei-Chun Tsai
  • Publication number: 20210043680
    Abstract: In some embodiments, the present disclosure relates to a method for recovering degraded device performance of a piezoelectric device. The method includes operating the piezoelectric device in a performance mode by applying one or more voltage pulses to the piezoelectric device, and determining that a performance parameter of the piezoelectric device has a first value that has deviated from a reference value by more than a predetermined threshold value during a first time period. During a second time period, the method further includes applying a bipolar loop to the piezoelectric device, comprising positive and negative voltage biases. During a third time period, the method further includes operating the piezoelectric device in the performance mode, wherein the performance parameter has a second value. An absolute difference between the second value and the reference value is less than an absolute difference between the first value and the reference value.
    Type: Application
    Filed: August 7, 2019
    Publication date: February 11, 2021
    Inventors: Chi-Yuan Shih, Shih-Fen Huang, You-Ru Lin, Yan-Jie Liao
  • Publication number: 20210043721
    Abstract: In some embodiments, the present disclosure relates to a metal-insulator-metal (MIM) device. The MIM device includes a substrate, and a first and second electrode stacked over the substrate. A dielectric layer is arranged between the first and second electrodes. Further, the MIM device includes a titanium getter layer that is disposed over the substrate and separated from the dielectric layer by the first electrode. The titanium getter layer has a higher getter capacity for hydrogen than the dielectric layer.
    Type: Application
    Filed: August 5, 2019
    Publication date: February 11, 2021
    Inventors: Chi-Yuan Shih, Kai-Fung Chang, Shih-Fen Huang, Yan-Jie Liao
  • Patent number: 10861929
    Abstract: An electronic device includes a capacitor and a passivation layer covering the capacitor. The capacitor includes a first electrode, a dielectric layer disposed over the first electrode and a second electrode disposed over the dielectric layer. An area of the first electrode is greater than an area of the dielectric layer, and the area of the dielectric layer is greater than an area of the second electrode so that a side of the capacitor has a multi-step structure.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: December 8, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kai-Fung Chang, Lien-Yao Tsai, Baohua Niu, Yi-Chuan Teng, Chi-Yuan Shih
  • Publication number: 20200098969
    Abstract: In some embodiments, a piezoelectric device is provided. The piezoelectric device includes a semiconductor substrate. A first electrode is disposed over the semiconductor substrate. A piezoelectric structure is disposed on the first electrode. A second electrode is disposed on the piezoelectric structure. A heating element is disposed over the semiconductor substrate. The heating element is configured to heat the piezoelectric structure to a recovery temperature for a period of time, where heating the piezoelectric structure to the recovery temperature for the period of time improves a degraded electrical property of the piezoelectric device.
    Type: Application
    Filed: May 16, 2019
    Publication date: March 26, 2020
    Inventors: Alexander Kalnitsky, Chun-Ren Cheng, Chi-Yuan Shih, Kai-Fung Chang, Shih-Fen Huang, Yi-Chuan Teng, Yi Heng Tsai, You-Ru Lin, Yan-Jie Liao
  • Publication number: 20200098517
    Abstract: Various embodiments of the present disclosure are directed towards a piezoelectric metal-insulator-metal (MIM) device including a piezoelectric structure between a top electrode and a bottom electrode. The piezoelectric layer includes a top region overlying a bottom region. Outer sidewalls of the bottom region extend past outer sidewalls of the top region. The outer sidewalls of the top region are aligned with outer sidewalls of the top electrode. The piezoelectric layer is configured to help limit delamination of the top electrode from the piezoelectric layer.
    Type: Application
    Filed: May 21, 2019
    Publication date: March 26, 2020
    Inventors: Anderson Lin, Chun-Ren Cheng, Chi-Yuan Shih, Shih-Fen Huang, Yi-Chuan Teng, Yi Heng Tsai, You-Ru Lin, Yen-Wen Chen, Fu-Chun Huang, Fan Hu, Ching-Hui Lin, Yan-Jie Liao
  • Patent number: 10535573
    Abstract: Disclosed herein is a method for forming a test key system for characterizing wafer processing states, the method comprising forming a plurality of shallow trench isolation structures (STIs) on a substrate of a wafer and in a scribe line of the wafer and forming a test key on the substrate of a wafer and in the scribe line of the wafer. Forming the test key comprises forming at least one test key group having a plurality of test key series, each of the plurality of test key series having a plurality of test pads, each one of the plurality of test key series having a first physical characteristic different from the first physical characteristic of other test key series the at least one first test key group.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: January 14, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Yuan Shih, Wei-Chun Tsai
  • Publication number: 20200006469
    Abstract: The present disclosure relates to a MIM (metal-insulator-metal) capacitor having a top electrode overlying a substrate. A passivation layer overlies the top electrode. The passivation layer has a step region that continuously contacts and extends from a top surface of the top electrode to sidewalls of the top electrode. A metal frame overlies the passivation layer. The metal frame continuously contacts and extends from a top surface of the passivation layer to upper sidewalls of the passivation layer in the step region. The metal frame has a protrusion that extends through the passivation layer and contacts the top surface of the top electrode.
    Type: Application
    Filed: May 13, 2019
    Publication date: January 2, 2020
    Inventors: Chi-Yuan Shih, Kai-Fung Chang, Shih-Fen Huang, Wen-Chuan Tai, Yi-Chuan Teng, Yi Heng Tsai, You-Ru Lin, Yen-Wen Chen, Anderson Lin, Fu-Chun Huang, Chun-Ren Cheng, Ivan Hua-Shu Wu, Fan Hu, Ching-Hui Lin, Yan-Jie Liao
  • Publication number: 20200006470
    Abstract: An electronic device includes a capacitor and a passivation layer covering the capacitor. The capacitor includes a first electrode, a dielectric layer disposed over the first electrode and a second electrode disposed over the dielectric layer. An area of the first electrode is greater than an area of the dielectric layer, and the area of the dielectric layer is greater than an area of the second electrode so that a side of the capacitor has a multi-step structure.
    Type: Application
    Filed: October 18, 2018
    Publication date: January 2, 2020
    Inventors: Kai-Fung CHANG, Lien-Yao TSAI, Baohua NIU, Yi-Chuan TENG, Chi-Yuan SHIH
  • Publication number: 20190363191
    Abstract: A fin field effect transistor (FinFET), and a method of forming, is provided. The FinFET has a fin having one or more semiconductor layers epitaxially grown on a substrate. A first passivation layer is formed over the fins, and isolation regions are formed between the fins. An upper portion of the fins are reshaped and a second passivation layer is formed over the reshaped portion. Thereafter, a gate structure may be formed over the fins and source/drain regions may be formed.
    Type: Application
    Filed: August 12, 2019
    Publication date: November 28, 2019
    Inventors: Yen-Yu Chen, Chi-Yuan Shih, Chi-Wen Liu
  • Patent number: 10381482
    Abstract: A fin field effect transistor (FinFET), and a method of forming, is provided. The FinFET has a fin having one or more semiconductor layers epitaxially grown on a substrate. A first passivation layer is formed over the fins, and isolation regions are formed between the fins. An upper portion of the fins are reshaped and a second passivation layer is formed over the reshaped portion. Thereafter, a gate structure may be formed over the fins and source/drain regions may be formed.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: August 13, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yen-Yu Chen, Chi-Yuan Shih, Chi-Wen Liu
  • Publication number: 20190237370
    Abstract: Disclosed herein is a method for forming a test key system for characterizing wafer processing states, the method comprising forming a plurality of shallow trench isolation structures (STIs) on a substrate of a wafer and in a scribe line of the wafer and forming a test key on the substrate of a wafer and in the scribe line of the wafer. Forming the test key comprises forming at least one test key group having a plurality of test key series, each of the plurality of test key series having a plurality of test pads, each one of the plurality of test key series having a first physical characteristic different from the first physical characteristic of other test key series the at least one first test key group.
    Type: Application
    Filed: April 12, 2019
    Publication date: August 1, 2019
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Yuan Shih, Wei-Chun Tsai
  • Publication number: 20190123179
    Abstract: A method includes forming a semiconductor fin, performing a first passivation step on a top surface of the semiconductor fin using a first passivation species, and performing a second passivation step on sidewalls of the semiconductor fin using a second passivation species different from the first passivation species. A gate stack is formed on a middle portion of the semiconductor fin. A source or a drain region is formed on a side of the gate stack, wherein the source or drain region and the gate stack form a Fin Field-Effect Transistor (FinFET).
    Type: Application
    Filed: December 11, 2018
    Publication date: April 25, 2019
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Yuan Shih, Wei-Chun Tsai
  • Patent number: 10269666
    Abstract: Disclosed herein is a method for forming a test key system for characterizing wafer processing states, the method comprising forming a plurality of shallow trench isolation structures (STIs) on a substrate of a wafer and in a scribe line of the wafer and forming a test key on the substrate of a wafer and in the scribe line of the wafer. Forming the test key comprises forming at least one test key group having a plurality of test key series, each of the plurality of test key series having a plurality of test pads, each one of the plurality of test key series having a first physical characteristic different from the first physical characteristic of other test key series the at least one first test key group.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Yuan Shih, Wei-Chun Tsai
  • Patent number: 10186602
    Abstract: The disclosure relates to a fin field effect transistor (FinFET). An exemplary FinFET comprises a substrate comprising a major surface; a fin structure protruding from the major surface comprising an upper portion comprising a first semiconductor material having a first lattice constant, wherein the upper portion comprises a first substantially vertical portion having a first width and a second substantially vertical portion having a second width less than the first width over the first substantially vertical portion; and a lower portion comprising a second semiconductor material having a second lattice constant less than the first lattice constant, wherein a top surface of the lower portion has a third width less than the first width; and a gate structure covering the second substantially vertical portion.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: January 22, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Yen-Yu Chen, Hung-Yao Chen, Chi-Yuan Shih, Ling-Yen Yeh, Clement Hsingjen Wann
  • Patent number: 10164070
    Abstract: A method includes forming a semiconductor fin, performing a first passivation step on a top surface of the semiconductor fin using a first passivation species, and performing a second passivation step on sidewalls of the semiconductor fin using a second passivation species different from the first passivation species. A gate stack is formed on a middle portion of the semiconductor fin. A source or a drain region is formed on a side of the gate stack, wherein the source or drain region and the gate stack form a Fin Field-Effect Transistor (FinFET).
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Yuan Shih, Wei-Chun Tsai
  • Patent number: 10115597
    Abstract: A device having an epitaxial region and dual metal-semiconductor alloy surfaces is provided. The epitaxial region includes an upward facing facet and a downward facing facet. The upward facing facet has a first metal-semiconductor alloy surface and the downward facing facet has a second metal-semiconductor alloy surface, wherein the first metal-semiconductor alloy is different than the second metal-semiconductor alloy.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: October 30, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hsiung Tsai, Chi-Yuan Shih, Gin-Chen Huang, Clement Hsingjen Wann, Li-Chi Yu, Chin-Hsiang Lin, Ling-Yen Yeh, Meng-Chun Chang, Neng-Kuo Chen, Sey-Ping Sun, Ta-Chun Ma, Yen-Chun Huang