Patents by Inventor Chi-Yuan Wen

Chi-Yuan Wen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180240838
    Abstract: The present disclosure, in some embodiments, relates to a method of forming an image sensor integrated chip. The method may be performed by forming an image sensing element within a substrate, and forming an absorption enhancement structure over a back-side of the substrate. The absorption enhancement structure is selectively etched to concurrently define a plurality of grid structure openings and a ground structure opening within the absorption enhancement structure. A grid structure is formed within the plurality of grid structure openings and a ground structure is formed within the ground structure opening. The grid structure extends from over the absorption enhancement structure to a location within the absorption enhancement structure.
    Type: Application
    Filed: April 24, 2018
    Publication date: August 23, 2018
    Inventors: Chi-Yuan Wen, Chien Nan Tu, Ming-Chi Wu, Yu-Lung Yeh
  • Patent number: 10056427
    Abstract: An FSI image sensor device structure is provided. The FSI image sensor device structure includes a substrate and a barrier structure formed in the substrate. The barrier structure includes a plurality of protrusion portions and a plurality of pillar portions. Each of the protrusion portions has a first height, and each of the pillar portions has a second height that is greater than the first height. The FSI image sensor device structure includes a pixel region formed over the protrusion portions and a storage region formed over the protrusion portions, wherein the pillar portions surround the pixel region.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: August 21, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ji-Heng Jiang, Ming-Chi Wu, Chi-Yuan Wen, Chien-Nan Tu, Yu-Lung Yeh
  • Publication number: 20180151615
    Abstract: The present disclosure relates to an image sensor integrated chip having a grid structure that reduces crosstalk between pixel regions of an image sensor chip. In some embodiments, the integrated chip has an image sensing element arranged within a substrate. An absorption enhancement structure is disposed along the back-side of the substrate. A grid structure is arranged over the absorption enhancement structure. The grid structure defines an opening arranged over the image sensing element and extends from over the absorption enhancement structure to a location within the absorption enhancement structure. By having the grid structure extend into the absorption enhancement structure, the grid structure is able to reduce crosstalk between adjacent image sensing elements by blocking radiation reflected off of non-planar surfaces of the absorption enhancement structure from traveling to an adjacent pixel region.
    Type: Application
    Filed: March 27, 2017
    Publication date: May 31, 2018
    Inventors: Chi-Yuan Wen, Chien Nan Tu, Ming-Chi Wu, Yu-Lung Yeh
  • Publication number: 20180151759
    Abstract: The present disclosure relates to an integrated chip that has a light sensing element arranged within a substrate. An absorption enhancement structure is arranged along a back-side of the substrate, and an interconnect structure is arranged along a front-side of the substrate. A reflection structure includes a dielectric structure and a plurality of semiconductor pillars that matingly engage the dielectric structure. The dielectric structure and semiconductor pillars are arranged along the front-side of the substrate and are spaced between the light sensing element and the interconnect structure. The plurality of semiconductor pillars and the dielectric structure are collectively configured to reflect incident light that has passed through the absorption enhancement structure and through the light sensing element back towards the light sensing element before the incident light strikes the interconnect structure.
    Type: Application
    Filed: September 27, 2017
    Publication date: May 31, 2018
    Inventors: Po-Han Huang, Chien Nan Tu, Chi-Yuan Wen, Ming-Chi Wu, Yu-Lung Yeh, Hsin-Yi Kuo
  • Patent number: 9984918
    Abstract: A semiconductor structure includes a semiconductive substrate including a first surface and a second surface opposite to the first surface, a shallow trench isolation (STI) including a first portion at least partially disposed within the semiconductive substrate and tapered from the first surface towards the second surface, and a second portion disposed inside the semiconductive substrate, coupled with the first portion and extended from the first portion towards the second surface, and a void enclosed by the STI, wherein the void is at least partially disposed within the second portion of the STI.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: May 29, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Chung Su, Jiech-Fun Lu, Jian Wu, Che-Hsiang Hsueh, Ming-Chi Wu, Chi-Yuan Wen, Chun-Chieh Fang, Yu-Lung Yeh
  • Patent number: 9985072
    Abstract: The present disclosure relates to an image sensor integrated chip having a grid structure that reduces crosstalk between pixel regions of an image sensor chip. In some embodiments, the integrated chip has an image sensing element arranged within a substrate. An absorption enhancement structure is disposed along the back-side of the substrate. A grid structure is arranged over the absorption enhancement structure. The grid structure defines an opening arranged over the image sensing element and extends from over the absorption enhancement structure to a location within the absorption enhancement structure. By having the grid structure extend into the absorption enhancement structure, the grid structure is able to reduce crosstalk between adjacent image sensing elements by blocking radiation reflected off of non-planar surfaces of the absorption enhancement structure from traveling to an adjacent pixel region.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: May 29, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chi-Yuan Wen, Chien Nan Tu, Ming-Chi Wu, Yu-Lung Yeh
  • Publication number: 20170194190
    Abstract: A semiconductor structure includes a semiconductive substrate including a first surface and a second surface opposite to the first surface, a shallow trench isolation (STI) including a first portion at least partially disposed within the semiconductive substrate and tapered from the first surface towards the second surface, and a second portion disposed inside the semiconductive substrate, coupled with the first portion and extended from the first portion towards the second surface, and a void enclosed by the STI, wherein the void is at least partially disposed within the second portion of the STI.
    Type: Application
    Filed: April 1, 2016
    Publication date: July 6, 2017
    Inventors: CHING-CHUNG SU, JIECH-FUN LU, JIAN WU, CHE-HSIANG HSUEH, MING-CHI WU, CHI-YUAN WEN, CHUN-CHIEH FANG, YU-LUNG YEH
  • Publication number: 20160372360
    Abstract: A semiconductor structure is provided, which includes a semiconductor substrate, a first well region, a second well region, an active region, a shallow trench isolation (STI) and at least one deep trench isolation (DTI). The first well region of a first conductive type is on the semiconductor substrate. The second well region of a second conductive type is on the semiconductor substrate and adjacent to the first well region. The second conductive type is different from the first conductive type. The active region is on the first well region. The active region has a conductive type the same as the second conductive type of the second well region. The STI is between the first and second well regions. The DTI is below the STI. The DTI is disposed between at least a portion of the first well region and at least a portion of the second well region.
    Type: Application
    Filed: June 17, 2015
    Publication date: December 22, 2016
    Inventors: Chun-Chieh FANG, Chien-Chang HUANG, Chi-Yuan WEN, Jian WU, Ming-Chi WU, Jung-Yu CHENG, Shih-Shiung CHEN, Wei-Tung HUANG, Yu-Lung YEH
  • Publication number: 20150258937
    Abstract: device vehicle includes a pillar, a driver seat and a blind spot monitor device including a camera module, a display module and a mounting component. The camera module includes a camera disposed to substantially face a direction along a line of sight of a driver who sits in the driver seat toward the pillar and operable to capture an image of a blind spot attributed to the pillar and to output an image data signal. The display module includes a display coupled to the camera module for receiving the image data signal and operable to display the image of the blind spot according to the image data signal. The mounting component supports the display module at a position within the line of sight of the driver toward the pillar.
    Type: Application
    Filed: March 12, 2015
    Publication date: September 17, 2015
    Inventor: Chi-Yuan WEN
  • Patent number: 8293649
    Abstract: A method of forming an integrated circuit structure on a wafer includes providing an etcher having an electrostatic chuck (ESC); and placing the wafer on the ESC. The wafer includes a conductive feature and a dielectric layer over the conductive feature. The method further includes forming and patterning a photo resist over the wafer; and etching the dielectric layer to form a via opening in the wafer using the etcher. An ashing is performed to the photo resist to remove the photo resist. An oxygen neutralization is performed to the wafer. A de-chuck step is performed to release the wafer from the ESC.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: October 23, 2012
    Assignee: Global Unichip Corp.
    Inventors: Ting-Yi Lin, Chi-Yuan Wen
  • Patent number: 8263495
    Abstract: A method of forming an integrated circuit structure on a wafer includes providing a first etcher comprising a first electrostatic chuck (ESC); placing the wafer on the first ESC; and forming a via opening in the wafer using the first etcher. After the step of forming the via opening, a first reverse de-chuck voltage is applied to the first ESC to release the wafer. The method further includes placing the wafer on a second ESC of a second etcher; and performing an etching step to form an additional opening in the wafer using the second etcher. After the step of forming the additional opening, a second reverse de-chuck voltage is applied to the second ESC to release the wafer. The second reverse de-chuck voltage is different from the first reverse de-chuck voltage.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: September 11, 2012
    Assignee: Global Unichip Corp.
    Inventors: Ting-Yi Lin, Chi-Yuan Wen, Chuang Tse Chuan, Miau-Shing Tsay, Ming Li Wu
  • Publication number: 20110147338
    Abstract: A method of forming an integrated circuit structure on a wafer includes providing an etcher having an electrostatic chuck (ESC); and placing the wafer on the ESC. The wafer includes a conductive feature and a dielectric layer over the conductive feature. The method further includes forming and patterning a photo resist over the wafer; and etching the dielectric layer to form a via opening in the wafer using the etcher. An ashing is performed to the photo resist to remove the photo resist. An oxygen neutralization is performed to the wafer. A de-chuck step is performed to release the wafer from the ESC.
    Type: Application
    Filed: December 18, 2009
    Publication date: June 23, 2011
    Inventors: Ting-Yi Lin, Chi-Yuan Wen
  • Publication number: 20110151669
    Abstract: A method of forming an integrated circuit structure on a wafer includes providing a first etcher comprising a first electrostatic chuck (ESC); placing the wafer on the first ESC; and forming a via opening in the wafer using the first etcher. After the step of forming the via opening, a first reverse de-chuck voltage is applied to the first ESC to release the wafer. The method further includes placing the wafer on a second ESC of a second etcher; and performing an etching step to form an additional opening in the wafer using the second etcher. After the step of forming the additional opening, a second reverse de-chuck voltage is applied to the second ESC to release the wafer. The second reverse de-chuck voltage is different from the first reverse de-chuck voltage.
    Type: Application
    Filed: December 18, 2009
    Publication date: June 23, 2011
    Inventors: Ting-Yi Lin, Chi-Yuan Wen, Chuang Tse Chuan, Miau-Shing Tsay, Ming Li Wu