Patents by Inventor Chia-Cheng Chen

Chia-Cheng Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10658508
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The method includes forming a fin structure over a semiconductor substrate and forming a gate stack over the fin structure. The method also includes forming an epitaxial structure over the fin structure. The method further includes forming a dielectric layer over the epitaxial structure and forming an opening in the dielectric layer to expose the epitaxial structure. In addition, the method includes forming a modified region in the epitaxial structure. The modified region has lower crystallinity than an inner portion of the epitaxial structure and extends along an entirety of an exposed surface of the epitaxial structure. The method also includes forming a semiconductor-metal compound region on the epitaxial structure. All or some of the modified region is transformed into the semiconductor-metal compound region.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: May 19, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Cheng Chen, Su-Hao Liu, Kuo-Ju Chen, Liang-Yin Chen
  • Patent number: 10629572
    Abstract: An electronic package is provided, including: a first substrate having a first insulating portion; a first electronic component disposed on the first substrate; a second substrate having a second insulating portion and stacked on the first substrate through a plurality of conductive elements; and a first encapsulant formed between the first substrate and the second substrate. The first insulating portion of the first substrate differs in rigidity from the second insulating portion of the second substrate. As such, during a high temperature process, one of the first substrate and the second substrate pulls at the other to bend toward the same direction, thereby reducing warpage deviation of the overall electronic package. The present invention further provides a method for fabricating the electronic package.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: April 21, 2020
    Assignee: Silicon Precision Industries Co., Ltd.
    Inventors: Chi-Rui Wu, Fu-Tang Huang, Chia-Cheng Chen, Chun-Hsien Lin, Hsuan-Hao Mi, Yu-Cheng Pai
  • Publication number: 20200119195
    Abstract: Embodiments disclosed herein relate generally to forming an ultra-shallow junction having high dopant concentration and low contact resistance in a p-type source/drain region. In an embodiment, a method includes forming a source/drain region in an active area on a substrate, the source/drain region comprising germanium, performing an ion implantation process using gallium (Ga) to form an amorphous region in the source/drain region, performing an ion implantation process using a dopant into the amorphous region, and subjecting the amorphous region to a thermal process.
    Type: Application
    Filed: December 11, 2019
    Publication date: April 16, 2020
    Inventors: Su-Hao Liu, Kuo-Ju Chen, Chun-Hung Wu, Chia-Cheng Chen, Liang-Yin Chen, Huicheng Chang, Ying-Lang Wang
  • Publication number: 20200006486
    Abstract: Embodiments disclosed herein relate generally to forming a source/drain region with a high surface dopant concentration at an upper surface of the source/drain region, to which a conductive feature may be formed. In an embodiment, a structure includes an active area on a substrate, a dielectric layer over the active area, and a conductive feature through the dielectric layer to the active area. The active area includes a source/drain region. The source/drain region includes a surface dopant region at an upper surface of the source/drain region, and includes a remainder portion of the source/drain region having a source/drain dopant concentration. The surface dopant region includes a peak dopant concentration proximate the upper surface of the source/drain region. The peak dopant concentration is at least an order of magnitude greater than the source/drain dopant concentration. The conductive feature contacts the source/drain region at the upper surface of the source/drain region.
    Type: Application
    Filed: September 12, 2019
    Publication date: January 2, 2020
    Inventors: Chia-Cheng Chen, Liang-Yin Chen
  • Patent number: 10510891
    Abstract: Embodiments disclosed herein relate generally to forming an ultra-shallow junction having high dopant concentration and low contact resistance in a p-type source/drain region. In an embodiment, a method includes forming a source/drain region in an active area on a substrate, the source/drain region comprising germanium, performing an ion implantation process using gallium (Ga) to form an amorphous region in the source/drain region, performing an ion implantation process using a dopant into the amorphous region, and subjecting the amorphous region to a thermal process.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: December 17, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Su-Hao Liu, Kuo-Ju Chen, Chun-Hung Wu, Chia-Cheng Chen, Liang-Yin Chen, Huicheng Chang, Ying-Lang Wang
  • Patent number: 10510838
    Abstract: Embodiments disclosed herein relate generally to forming a source/drain region with a high surface dopant concentration at an upper surface of the source/drain region, to which a conductive feature may be formed. In an embodiment, a structure includes an active area on a substrate, a dielectric layer over the active area, and a conductive feature through the dielectric layer to the active area. The active area includes a source/drain region. The source/drain region includes a surface dopant region at an upper surface of the source/drain region, and includes a remainder portion of the source/drain region having a source/drain dopant concentration. The surface dopant region includes a peak dopant concentration proximate the upper surface of the source/drain region. The peak dopant concentration is at least an order of magnitude greater than the source/drain dopant concentration. The conductive feature contacts the source/drain region at the upper surface of the source/drain region.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: December 17, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Cheng Chen, Liang-Yin Chen
  • Publication number: 20190378928
    Abstract: Embodiments disclosed herein relate generally to forming an ultra-shallow junction having high dopant concentration and low contact resistance in a p-type source/drain region. In an embodiment, a method includes forming a source/drain region in an active area on a substrate, the source/drain region comprising germanium, performing an ion implantation process using gallium (Ga) to form an amorphous region in the source/drain region, performing an ion implantation process using a dopant into the amorphous region, and subjecting the amorphous region to a thermal process.
    Type: Application
    Filed: July 8, 2019
    Publication date: December 12, 2019
    Inventors: Su-Hao Liu, Kuo-Ju Chen, Chun-Hung Wu, Chia-Cheng Chen, Liang-Yin Chen, Huicheng Chang, Ying-Lang Wang
  • Patent number: 10431535
    Abstract: An electronic package and a method for fabricating the same are provided. The method includes forming an antenna structure in contact with one side of a circuit structure of a packaging substrate, and disposing an electronic component on the other side of the circuit structure. As such, the antenna structure is integrated with the packaging substrate, thereby reducing the thickness of the electronic package and improving the efficiency of the antenna structure.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: October 1, 2019
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Jui-Feng Chen, Chia-Cheng Hsu, Wen-Jung Tsai, Chia-Cheng Chen, Cheng Kai Chang
  • Publication number: 20190288068
    Abstract: The present disclosure relates generally to doping for conductive features in a semiconductor device. In an example, a structure includes an active region of a transistor. The active region includes a source/drain region, and the source/drain region is defined at least in part by a first dopant having a first dopant concentration. The source/drain region further includes a second dopant with a concentration profile having a consistent concentration from a surface of the source/drain region into a depth of the source/drain region. The consistent concentration is greater than the first dopant concentration. The structure further includes a conductive feature contacting the source/drain region at the surface of the source/drain region.
    Type: Application
    Filed: June 6, 2019
    Publication date: September 19, 2019
    Inventors: Su-Hao Liu, Huicheng Chang, Chia-Cheng Chen, Liang-Yin Chen, Kuo-Ju Chen, Chun-Hung Wu, Chang-Maio Liu, Huai-Tei Yang, Lun-Kuang Tan, Wei-Ming You
  • Publication number: 20190245057
    Abstract: An embodiment fin field-effect-transistor (finFET) includes a semiconductor fin comprising a channel region and a gate oxide on a sidewall and a top surface of the channel region. The gate oxide includes a thinnest portion having a first thickness and a thickest portion having a second thickness different than the first thickness. A difference between the first thickness and the second thickness is less than a maximum thickness variation, and the maximum thickness variation is in accordance with an operating voltage of the finFET.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 8, 2019
    Inventors: Chia-Cheng Chen, Meng-Shu Lin, Liang-Yin Chen, Xiong-Fei Yu, Syun-Ming Jang, Hui-Cheng Chang
  • Patent number: 10347762
    Abstract: Embodiments disclosed herein relate generally to forming an ultra-shallow junction having high dopant concentration and low contact resistance in a p-type source/drain region. In an embodiment, a method includes forming a source/drain region in an active area on a substrate, the source/drain region comprising germanium, performing an ion implantation process using gallium (Ga) to form an amorphous region in the source/drain region, performing an ion implantation process using a dopant into the amorphous region, and subjecting the amorphous region to a thermal process.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: July 9, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Su-Hao Liu, Kuo-Ju Chen, Chun-Hung Wu, Chia-Cheng Chen, Liang-Yin Chen, Huicheng Chang, Ying-Lang Wang
  • Patent number: 10347720
    Abstract: The present disclosure relates generally to doping for conductive features in a semiconductor device. In an example, a structure includes an active region of a transistor. The active region includes a source/drain region, and the source/drain region is defined at least in part by a first dopant having a first dopant concentration. The source/drain region further includes a second dopant with a concentration profile having a consistent concentration from a surface of the source/drain region into a depth of the source/drain region. The consistent concentration is greater than the first dopant concentration. The structure further includes a conductive feature contacting the source/drain region at the surface of the source/drain region.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: July 9, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Su-Hao Liu, Huicheng Chang, Chia-Cheng Chen, Liang-Yin Chen, Kuo-Ju Chen, Chun-Hung Wu, Chang-Miao Liu, Huai-Tei Yang, Lun-Kuang Tan, Wei-Ming You
  • Patent number: 10326003
    Abstract: A finFET device and methods of forming a finFET device are provided. The method includes forming a first gate spacer is formed over a dummy gate of a fin field effect transistor (finFET). The method also includes performing a carbon plasma doping of the first gate spacer. The method also includes forming a plurality of source/drain regions, where a source/drain region is disposed on opposite sides of the dummy gate. The method also includes removing dummy gate.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: June 18, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Cheng Chen, Huicheng Chang, Liang-Yin Chen, Chun-Feng Nieh, Li-Ting Wang, Wan-Yi Kao, Chia-Ling Chan
  • Publication number: 20190164941
    Abstract: An electronic package is provided, including: a first substrate having a first insulating portion; a first electronic component disposed on the first substrate; a second substrate having a second insulating portion and stacked on the first substrate through a plurality of conductive elements; and a first encapsulant formed between the first substrate and the second substrate. The first insulating portion of the first substrate differs in rigidity from the second insulating portion of the second substrate. As such, during a high temperature process, one of the first substrate and the second substrate pulls at the other to bend toward the same direction, thereby reducing warpage deviation of the overall electronic package. The present invention further provides a method for fabricating the electronic package.
    Type: Application
    Filed: March 28, 2018
    Publication date: May 30, 2019
    Inventors: Chi-Rui Wu, Fu-Tang Huang, Chia-Cheng Chen, Chun-Hsien Lin, Hsuan-Hao Mi, Yu-Cheng Pai
  • Publication number: 20190165099
    Abstract: Embodiments disclosed herein relate generally to forming a source/drain region with a high surface dopant concentration at an upper surface of the source/drain region, to which a conductive feature may be formed. In an embodiment, a structure includes an active area on a substrate, a dielectric layer over the active area, and a conductive feature through the dielectric layer to the active area. The active area includes a source/drain region. The source/drain region includes a surface dopant region at an upper surface of the source/drain region, and includes a remainder portion of the source/drain region having a source/drain dopant concentration. The surface dopant region includes a peak dopant concentration proximate the upper surface of the source/drain region. The peak dopant concentration is at least an order of magnitude greater than the source/drain dopant concentration. The conductive feature contacts the source/drain region at the upper surface of the source/drain region.
    Type: Application
    Filed: November 29, 2017
    Publication date: May 30, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Cheng CHEN, Liang-Yin CHEN
  • Publication number: 20190157456
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The method includes forming a fin structure over a semiconductor substrate and forming a gate stack over the fin structure. The method also includes forming an epitaxial structure over the fin structure. The method further includes forming a dielectric layer over the epitaxial structure and forming an opening in the dielectric layer to expose the epitaxial structure. In addition, the method includes forming a modified region in the epitaxial structure. The modified region has lower crystallinity than an inner portion of the epitaxial structure and extends along an entirety of an exposed surface of the epitaxial structure. The method also includes forming a semiconductor-metal compound region on the epitaxial structure. All or some of the modified region is transformed into the semiconductor-metal compound region.
    Type: Application
    Filed: July 18, 2018
    Publication date: May 23, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Cheng CHEN, Su-Hao LIU, Kuo-Ju CHEN, Liang-Yin CHEN
  • Publication number: 20190131399
    Abstract: The present disclosure relates generally to doping for conductive features in a semiconductor device. In an example, a structure includes an active region of a transistor. The active region includes a source/drain region, and the source/drain region is defined at least in part by a first dopant having a first dopant concentration. The source/drain region further includes a second dopant with a concentration profile having a consistent concentration from a surface of the source/drain region into a depth of the source/drain region. The consistent concentration is greater than the first dopant concentration. The structure further includes a conductive feature contacting the source/drain region at the surface of the source/drain region.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 2, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Su-Hao LIU, Huicheng CHANG, Chia-Cheng CHEN, Liang-Yin CHEN, Kuo-Ju CHEN, Chun-Hung WU, Chang-Miao Liu, Huai-Tei Yang, Lun-Kuang Tan, Wei-Ming You
  • Publication number: 20190123181
    Abstract: A finFET device and methods of forming a finFET device are provided. The method includes forming a capping layer over a fin of a fin field effect transistor (finFET), where the fin is formed of a material comprising germanium. The method also includes forming a dummy dielectric layer over the capping layer. The method also includes forming a dummy gate over the dummy dielectric layer. The method also includes removing the dummy gate.
    Type: Application
    Filed: December 21, 2018
    Publication date: April 25, 2019
    Inventors: Chia-Cheng Chen, Huicheng Chang, Liang-Yin Chen
  • Patent number: 10269921
    Abstract: An embodiment fin field-effect-transistor (finFET) includes a semiconductor fin comprising a channel region and a gate oxide on a sidewall and a top surface of the channel region. The gate oxide includes a thinnest portion having a first thickness and a thickest portion having a second thickness different than the first thickness. A difference between the first thickness and the second thickness is less than a maximum thickness variation, and the maximum thickness variation is in accordance with an operating voltage of the finFET.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company Ltd.
    Inventors: Chia-Cheng Chen, Liang-Yin Chen, Xiong-Fei Yu, Syun-Ming Jang, Hui-Cheng Chang, Meng-Shu Lin
  • Publication number: 20190027473
    Abstract: A semiconductor device and a method for forming the same are provided. The semiconductor device includes a gate structure and a source/drain feature. The gate structure is positioned over a fin structure. The source/drain feature is positioned adjacent to the gate structure. A portion of the source/drain feature embedded in the fin structure has an upper sidewall portion adjacent to a top surface of the fin structure and a lower sidewall portion below the upper sidewall portion. A first curve radius of the upper sidewall portion is different from a second curve radius of the lower sidewall portion in a cross-sectional view substantially along the longitudinal direction of the fin structure.
    Type: Application
    Filed: July 18, 2017
    Publication date: January 24, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Cheng CHEN, Chia-Ling CHAN, Liang-Yin CHEN, Huicheng CHANG