Patents by Inventor Chien-Hao Huang

Chien-Hao Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130341719
    Abstract: The present invention discloses a hybrid high voltage device and a manufacturing method thereof. The hybrid high voltage device is formed in a first conductive type substrate, and includes at least one lateral double diffused metal oxide semiconductor (LDMOS) device region and at least one vent device region, wherein the LDMOS device region and the vent device region are connected in a width direction and arranged in an alternating order. Besides, corresponding high voltage wells, sources, drains, body regions, and gates of the LDMOS device region and the vent device region are connected to each other respectively.
    Type: Application
    Filed: June 21, 2012
    Publication date: December 26, 2013
    Inventors: Tsung-Yi Huang, Chien-Hao Huang
  • Publication number: 20130313641
    Abstract: The present invention discloses a double diffused metal oxide semiconductor (DMOS) device. The DMOS device is formed in a substrate, and includes a high voltage well, a first field oxide region, a first gate, a first source, a drain, a body region, a body electrode, a second field oxide region, a second gate, and a second source. The second field oxide region and the first field oxide region are separated by the high voltage well and the body region. A part of the second gate is on the second field oxide region, and another part of the second gate is on the body region. The second gate is electrically connected to the first gate, and the second source is electrically connected to the first source, such that when the DMOS device is ON, a surface channel and a buried channel are formed.
    Type: Application
    Filed: May 24, 2012
    Publication date: November 28, 2013
    Inventors: Tsung-Yi Huang, Chien-Wei Chiu, Chien-Hao Huang
  • Patent number: 8575693
    Abstract: The present invention discloses a double diffused metal oxide semiconductor (DMOS) device. The DMOS device is formed in a substrate, and includes a high voltage well, a first field oxide region, a first gate, a first source, a drain, a body region, a body electrode, a second field oxide region, a second gate, and a second source. The second field oxide region and the first field oxide region are separated by the high voltage well and the body region. A part of the second gate is on the second field oxide region, and another part of the second gate is on the body region. The second gate is electrically connected to the first gate, and the second source is electrically connected to the first source, such that when the DMOS device is ON, a surface channel and a buried channel are formed.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: November 5, 2013
    Assignee: Richtek Technology Corporation
    Inventors: Tsung-Yi Huang, Chien-Wei Chiu, Chien-Hao Huang
  • Publication number: 20130256846
    Abstract: The present invention discloses a semiconductor overlapped PN structure and manufacturing method thereof. The method includes: providing a substrate; providing a first mask to define a P (or N) type well and at least one overlapped region in the substrate; implanting P (or N) type impurities into the P (or N) type well and the at least one overlapped region; providing a second mask having at least one opening to define an N (or P) type well in the substrate, and to define at least one dual-implanted region in the at least one overlapped region; implanting N (or P) type impurities into the N (or P) type well and the at least one dual-implanted region such that the at least one dual-implanted region has P type and N type impurities.
    Type: Application
    Filed: April 16, 2013
    Publication date: October 3, 2013
    Applicant: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Tsung-Yi Huang, Chien-Hao Huang, Ying-Shiou Lin
  • Patent number: 8524586
    Abstract: The present invention discloses a semiconductor overlapped PN structure and manufacturing method thereof. The method includes: providing a substrate; providing a first mask to define a P (or N) type well and at least one overlapped region in the substrate; implanting P (or N) type impurities into the P (or N) type well and the at least one overlapped region; providing a second mask having at least one opening to define an N (or P) type well in the substrate, and to define at least one dual-implanted region in the at least one overlapped region; implanting N (or P) type impurities into the N (or P) type well and the at least one dual-implanted region such that the at least one dual-implanted region has P type and N type impurities.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: September 3, 2013
    Assignee: Richtek Technology Corporation
    Inventors: Tsung-Yi Huang, Chien-Hao Huang, Ying-Shiou Lin
  • Publication number: 20130181253
    Abstract: The present invention discloses a semiconductor structure and a manufacturing method thereof. The semiconductor structure is formed in a first conductive type substrate, which has an upper surface. The semiconductor structure includes: a protected device, at least a buried trench, and at least a doped region. The protected device is formed in the substrate. The buried trench is formed below the upper surface with a first depth, and the buried trench surrounds the protected device from top view. The doped region is formed below the upper surface with a second depth, and the doped region surrounds the buried trench from top view. The second depth is not less than the first depth.
    Type: Application
    Filed: January 18, 2012
    Publication date: July 18, 2013
    Inventors: Tsung-Yi Huang, Chien-Wei Chiu, Chien-Hao Huang
  • Publication number: 20130181319
    Abstract: The present invention discloses a trench Schottky barrier diode (SBD) and a manufacturing method thereof. The trench SBD includes: an epitaxial layer, formed on a substrate; multiple mesas, defined by multiple trenches; a field plate, formed on the epitaxial layer and filled in the multiple trenches, wherein a Schottky contact is formed between the field plate and top surfaces of the mesas; a termination region, formed outside the multiple mesas and electrically connected to the field plate; a field isolation layer, formed on the upper surface and located outside the termination region; and at least one mitigation electrode, formed below the upper surface outside the termination region, and is electrically connected to the field plate through the field isolation layer, wherein the mitigation electrode and the termination region are separated by part of a dielectric layer and part of the epitaxial layer.
    Type: Application
    Filed: July 8, 2012
    Publication date: July 18, 2013
    Inventors: Tsung-Yi Huang, Chien-Hao Huang
  • Patent number: 8444880
    Abstract: A yellow phosphor having oxyapatite structure, preparation method and white light-emitting diode thereof are disclosed. The yellow phosphor has a chemical formula of (A1?xEux)8?yB2+y(PO4)6?y(SiO4)y(O1?zSz)2, wherein A and Eu are divalent metal ions, B is a trivalent metal ion, 0<x?0.6, 0?y?6, and 0?z?1. A can be an alkaline earth metal, Mn or Zn. B can be a group 13 metal, a rare earth meal or Bi.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: May 21, 2013
    Assignee: National Chiao Tung University
    Inventors: Teng-Ming Chen, Chien-Hao Huang
  • Publication number: 20130069153
    Abstract: The present invention discloses a high voltage device and a manufacturing method thereof. The high voltage device includes: a substrate, having an isolation structure for defining a device region; a drift region located in the device region, wherein from top view, the drift region includes multiple sub-regions separated from one another but are electrically connected with one another; a source and a drain in the device region; and a gate on the surface of the substrate and between the source and drain in the device region.
    Type: Application
    Filed: September 17, 2011
    Publication date: March 21, 2013
    Inventors: Tsung-Yi Huang, Chien-Hao Huang
  • Publication number: 20120280320
    Abstract: The present invention discloses a high voltage device and a manufacturing method thereof. The high voltage device is formed in a first conductive type substrate, wherein the substrate includes isolation regions defining a device region. The high voltage device includes: a drift region, located in the device region, doped with second conductive type impurities; a gate in the device region and on the surface of the substrate; and a second conductive type source and drain in the device region, at different sides of the gate respectively. From top view, the concentration of the second conductive type impurities of the drift region is distributed substantially periodically along horizontal and vertical directions.
    Type: Application
    Filed: October 17, 2011
    Publication date: November 8, 2012
    Inventors: Tsung-Yi Huang, Chien-Hao Huang
  • Patent number: 8305688
    Abstract: A article includes a substrate and a metal dielectric reflective film. The metal dielectric reflective film is formed on the substrate, the metal dielectric reflective film includes a dielectric multiple layer and a metal layer. The dielectric multiple layer includes a first layer, a second layer, a third layer, and a fourth layer arranged in the order written and stacked one on another. The first and third layers comprised of a low refractive index material, the second and fourth layers comprised of a high refractive index material. The metal layer is disposed on the fourth layer.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: November 6, 2012
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Chien-Hao Huang
  • Publication number: 20120267767
    Abstract: The present invention discloses a semiconductor overlapped PN structure and manufacturing method thereof. The method includes: providing a substrate; providing a first mask to define a P (or N) type well and at least one overlapped region in the substrate; implanting P (or N) type impurities into the P (or N) type well and the at least one overlapped region; providing a second mask having at least one opening to define an N (or P) type well in the substrate, and to define at least one dual-implanted region in the at least one overlapped region; implanting N (or P) type impurities into the N (or P) type well and the at least one dual-implanted region such that the at least one dual-implanted region has P type and N type impurities.
    Type: Application
    Filed: April 20, 2011
    Publication date: October 25, 2012
    Inventors: TSUNG-YI HUANG, Chien-Hao Huang, Ying-Shiou Lin
  • Patent number: 8272344
    Abstract: An exemplary wet coating system includes a coating chamber, an annealing chamber, an unloading chamber, and a mechanical arm. The coating chamber is configured for allowing a substrate being wet coated therein. The unloading chamber is configured for allowing the substrate being unloaded therein. The annealing chamber is interposed between and communicated with the coating chamber and the unloading chamber and is configured for allowing the substrate being annealed therein. The communicated coating chamber, annealing chamber, and unloading chamber are vacuumized. The mechanical arm is configured for holding the substrate and moving the substrate across the coating chamber, the annealing chamber, and the unloading chamber.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: September 25, 2012
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Chien-Hao Huang, Shao-Kai Pei
  • Patent number: 8258546
    Abstract: A semiconductor device includes a semiconductor substrate and a transistor formed in the substrate, the transistor having a gate stack that has an interfacial layer formed on the substrate, a high-k dielectric layer formed over the interfacial layer, a metal layer formed over the high-dielectric layer, a capping layer formed between the interfacial layer and high-k dielectric layer; and a doped layer formed on the metal layer, the doped layer including at least F.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: September 4, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Lung Hung, Yong-Tian Hou, Keh-Chiang Ku, Chien-Hao Huang
  • Patent number: 8241757
    Abstract: A multilayer substrate includes a base layer, a coating layer and an intermediate layer positioned between the base layer and the coating layer. The intermediate layer contains chromium and nitrogen. A content of the chromium in the intermediate layer gradually decreases from the base layer to the coating layer.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: August 14, 2012
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Chao-Tsang Wei, Chung-Pei Wang, Chien-Hao Huang, Wei-Cheng Ling, Chia-Ying Wu, Ga-Lane Chen
  • Publication number: 20120153228
    Abstract: A yellow phosphor having oxyapatite structure, preparation method and white light-emitting diode thereof are disclosed. The yellow phosphor has a chemical formula of (A1?xEux)8?yB2+y(PO4)6?y(SiO4)y(O1?zSz)2, wherein A and Eu are divalent metal ions, B is a trivalent metal ion, 0<x?0.6, 0?y?6, and 0?z?1. A can be an alkaline earth metal, Mn or Zn. B can be a group 13 metal, a rare earth meal or Bi.
    Type: Application
    Filed: November 10, 2011
    Publication date: June 21, 2012
    Applicant: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Teng-Ming CHEN, Chien-Hao HUANG
  • Patent number: 8198962
    Abstract: A carrier for transmitting a high frequency signal and a carrier layout method thereof are provided. The carrier includes a substrate, conducting wires and reference planes both formed on the substrate. The carrier layout method includes defining impedance and thickness of the carrier according to the high frequency signal and defining layout parameters according to the impedance and the thickness. The layout parameters include a conducting layer formed on the conducting wires, a coplanar waveguide encompasses both the reference planes and the conducting wires as a part thereof, roughness portions formed on the conducting wires, recessed portions formed on the conducting wires, and the substrate being a high loss tangent substrate. The layout is performed according to the layout parameters defined thereabove, so as to increase loss of the high frequency signal in transmission.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: June 12, 2012
    Assignee: Askey Computer Corp.
    Inventors: Chih-Ming Yang, Chien-Hao Huang, Chao-Nan Tsai, Ching-Feng Hsieh, Chin-Ching Chang, Chun-Hsiung Tsai, Pi-Chi Chang, Chih-Wei Huang
  • Publication number: 20110272766
    Abstract: A semiconductor device includes a semiconductor substrate and a transistor formed in the substrate, the transistor having a gate stack that has an interfacial layer formed on the substrate, a high-k dielectric layer formed over the interfacial layer, a metal layer formed over the high-dielectric layer, a capping layer formed between the interfacial layer and high-k dielectric layer; and a doped layer formed on the metal layer, the doped layer including at least F.
    Type: Application
    Filed: July 20, 2011
    Publication date: November 10, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Lung Hung, Yong-Tian Hou, Keh-Chiang Ku, Chien-Hao Huang
  • Patent number: 7994051
    Abstract: The present disclosure provides a method of fabricating a semiconductor device. The method includes forming a high-k dielectric layer over a semiconductor substrate, forming a capping layer over the high-k dielectric layer, forming a metal layer over the capping layer, forming a semiconductor layer over the metal layer, performing an implantation process on the semiconductor layer, the implantation process using a species including F, and forming a gate structure from the plurality of layers including the high-k dielectric layer, capping layer, metal layer, and semiconductor layer.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: August 9, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Lung Hung, Yong-Tian Hou, Keh-Chiang Ku, Chien-Hao Huang
  • Publication number: 20110174673
    Abstract: A colored device casing includes a base, a color layer and a bonding layer. The base has at least one smooth region. The bonding layer is positioned between the base and the color layer and bonds the base and color layer together. A portion of the color layer corresponding to and located over the smooth region has a value of L* in a range from about 81.76 to about 83.76, a value of a* in a range from about ?0.63 to about 0.37 and a value of b* in a range from about ?1.04 to about ?0.04 according to the Commission Internationale del'Eclairage LAB system. A surface-treating method for fabricating the colored casing is also provided.
    Type: Application
    Filed: August 25, 2010
    Publication date: July 21, 2011
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: GA-LANE CHEN, CHAO-TSANG WEI, CHUNG-PEI WANG, CHING-CHOU CHANG, SHIH-CHE CHIEN, WEI-CHENG LING, CHIA-YING WU, HSIN-CHIN HUNG, MING-YANG LIAO, TAI-SHENG TSAI, CHIEN-HAO HUANG