Patents by Inventor Chih-Chau Hwang

Chih-Chau Hwang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180209260
    Abstract: Compositions include (1) aggregating compositions capable of forming deformable partial or complete coatings on formation surfaces, formation particle surfaces, downhole fluid solid surfaces, and/or proppant surfaces, where the coatings increase aggregation and/or agglomeration propensities of the particles and surfaces to form particles clusters or pillars having deformable coatings, and (2) aggregation stabilizing and/or strengthening compositions capable of altering properties of the coated clusters or pillars to form consolidated, stabilized, and/or strengthened clusters or pillars. Methods for stabilizing aggregated particle clusters or pillars include (1) treating the particles with an aggregating composition to form aggregated clusters or pillars and (2) treating the aggregated particle clusters or pillars with a stabilizing or strengthening composition to form consolidated, stabilized, and/or strengthened clusters or pillars.
    Type: Application
    Filed: January 22, 2018
    Publication date: July 26, 2018
    Inventors: Chih-Chau Hwang, Rajesh K. Saini, Leonid Vigderman, Duane Treybig, Clayton S. Smith, Mathew M. Samuel, Kern L. Smith
  • Patent number: 10001769
    Abstract: Systems and methods generate optimized formation fracturing operational parameters by iteratively optimizing bottom hole temperature design, perforation design, fracturing fluid pulse design, and proppant design based on formation properties, proppant properties, candidate selection, flow and geomechanical modeling, and engineering design, where the systems and methods as implemented on a digital processing unit.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: June 19, 2018
    Assignee: Weatherford Technology Holdings, LLC
    Inventors: Jian Huang, Kedar M. Deshpande, Mohammad Reza Safariforoshani, Ovunc Mutlu, Chih-Chau Hwang, Rajesh K. Saini, Leonid Vigderman, Duane Treybig, Clayton S. Smith, Mathew M. Samuel, Kern L. Smith
  • Patent number: 9945220
    Abstract: Methods for forming proppant pillars in a formation during formation fracturing include include periods of pumping a first fracturing fluid including a proppant and an aggregating composition including a reaction product of a phosphate compound or a plurality of phosphate and an amine, periods of pumping a second fracturing fluid excluding a proppant and an aggregating composition including a reaction product of a phosphate compound and periods of pumping a third fracturing fluid including an aggregating composition including a reaction product of a phosphate compound, where the pumping of the three fracturing fluids may be in any order and may involve continuous pumping, pulse pumping, or non-continuous pumping.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: April 17, 2018
    Assignee: The Lubrizol Corporation
    Inventors: Rajesh K. Saini, Clayton S. Smith, Mathew M. Samuel, Kern L. Smith, Chih- Chau Hwang, Leonid Vigderman, Duane Treybig, Pratyush Singh
  • Patent number: 9909404
    Abstract: Compositions include (1) aggregating compositions capable of forming deformable partial or complete coatings on formation surfaces, formation particle surfaces, downhole fluid solid surfaces, and/or proppant surfaces, where the coatings increase aggregation and/or agglomeration propensities of the particles and surfaces to form particles clusters or pillars having deformable coatings, and (2) aggregation stabilizing and/or strengthening compositions capable of altering properties of the coated clusters or pillars to form consolidated, stabilized, and/or strengthened clusters or pillars. Methods for stabilizing aggregated particle clusters or pillars include (1) treating the particles with an aggregating composition to form aggregated clusters or pillars and (2) treating the aggregated particle clusters or pillars with a stabilizing or strengthening composition to form consolidated, stabilized, and/or strengthened clusters or pillars.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: March 6, 2018
    Assignee: The Lubrizol Corporation
    Inventors: Chih-Chau Hwang, Rajesh K. Saini, Leonid Vigderman, Duane Treybig, Clayton S. Smith, Mathew M. Samuel, Kern L. Smith
  • Patent number: 9776165
    Abstract: In some embodiments, the present disclosure pertains to materials for use in CO2 capture in high pressure environments. In some embodiments, the materials include a porous carbon material containing a plurality of pores for use in a high pressure environment. Additional embodiments pertain to methods of utilizing the materials of the present disclosure to capture CO2 from various environments. In some embodiments, the materials of the present disclosure selectively capture CO2 over hydrocarbon species in the environment.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: October 3, 2017
    Assignee: WILLIAM MARSH RICE UNIVERSITY
    Inventors: James M. Tour, Desmond E. Schipper, Chih-Chau Hwang, Josiah Tour, Almaz S. Jalilov, Gedeng Ruan, Yilun Li
  • Patent number: 9718045
    Abstract: Composite materials and methods of preparing C02 capture include: (1) a porous solid support comprising a plurality of porous channels; and (2) a nucleophilic source associated with the porous channels of the porous solid support. The nucleophilic source is capable of converting the captured C02 to poly(C02). Methods of capturing C02 from an environment include associating the environment with the aforementioned composite materials to lead to the capture of C02 from the environment. Such methods may also include a step of releasing the captured C02 from the composite material. The associating step comprises a conversion of the captured C02 to poly(C02) in the composite material. A releasing step may also include a depolymerization of the formed poly(C02).
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: August 1, 2017
    Assignee: WILLIAM MARCH RICE UNIVERSITY
    Inventors: James M. Tour, Chih-Chau Hwang
  • Patent number: 9604849
    Abstract: In some embodiments, the present disclosure pertains to methods of capturing a gas from an environment by associating the environment (e.g., a pressurized environment) with a porous carbon material that comprises a plurality of pores and a plurality of nucleophilic moieties. In some embodiments, the associating results in sorption of gas components (e.g., CO2 or H2S) to the porous carbon materials. In some embodiments, the methods of the present disclosure also include a step of releasing captured gas components from porous carbon materials. In some embodiments, the releasing occurs without any heating steps by decreasing environmental pressure. In some embodiments, the methods of the present disclosure also include a step of disposing released gas components and reusing porous carbon materials. Additional embodiments of the present disclosure pertain to porous carbon materials that are used for gas capture.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: March 28, 2017
    Assignee: WILLIAM MARSH RICE UNIVERSITY
    Inventors: James M. Tour, Chih-Chau Hwang, Desmond E. Schipper
  • Patent number: 9597656
    Abstract: In some embodiments, the present disclosure pertains to materials for use in CO2 capture in high pressure environments. In some embodiments, the materials include a porous carbon material containing a plurality of pores for use in a high pressure environment. Additional embodiments pertain to methods of utilizing the materials of the present disclosure to capture CO2 from various environments. In some embodiments, the materials of the present disclosure selectively capture CO2 over hydrocarbon species in the environment.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: March 21, 2017
    Assignee: WILLIAM MARSH RICE UNIVERSITY
    Inventors: James M. Tour, Desmond E. Schipper, Chih-Chau Hwang, Josiah Tour, Almaz S. Jalilov, Gedeng Ruan, Yilun Li
  • Patent number: 9377449
    Abstract: Various embodiments of the present disclosure pertain to nanocomposites for detecting hydrocarbons in a geological structure. In some embodiments, the nanocomposites include: a core particle; a polymer associated with the core particle; a sulfur-based moiety associated with the polymer; and a releasable probe molecule associated with the core particle, where the releasable probe molecule is releasable from the core particle upon exposure to hydrocarbons. Additional embodiments of the present disclosure pertain to methods of detecting hydrocarbons in a geological structure by utilizing the nanocomposites of the present disclosure.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: June 28, 2016
    Assignee: WILLIAM MARSH RICE UNIVERSITY
    Inventors: James M. Tour, Chih-Chau Hwang, Wei Lu, Gedeng Ruan, Mason B. Tomson, Amy Kan, Lu Wang, Michael S. Wong, Gautam Kini, George J. Hirasaki, Clarence Miller
  • Publication number: 20160136613
    Abstract: In some embodiments, the present disclosure pertains to materials for use in CO2 capture in high pressure environments. In some embodiments, the materials include a porous carbon material containing a plurality of pores for use in a high pressure environment. Additional embodiments pertain to methods of utilizing the materials of the present disclosure to capture CO2 from various environments. In some embodiments, the materials of the present disclosure selectively capture CO2 over hydrocarbon species in the environment.
    Type: Application
    Filed: January 20, 2016
    Publication date: May 19, 2016
    Inventors: James M. Tour, Desmond E. Schipper, Chih-Chau Hwang, Josiah Tour, Almaz S. Jalilov, Gedeng Ruan, Yilun Li
  • Publication number: 20160139588
    Abstract: Systems and methods generate optimized formation fracturing operational parameters by iteratively optimizing bottom hole temperature design, perforation design, fracturing fluid pulse design, and proppant design based on formation properties, proppant properties, candidate selection, flow and geomechanical modeling, and engineering design, where the systems and methods as implemented on a digital processing unit.
    Type: Application
    Filed: November 18, 2014
    Publication date: May 19, 2016
    Inventors: Jian Huang, Kedar M. Deshpande, Mohammad Reza Safariforoshani, Ovunc Mutlu, Chih-Chau Hwang, Rajesh K. Saini, Leonid Vigderman, Duane Treybig, Clayton S. Smith, Mathew M. Samuel, Kern L. Smith
  • Patent number: 9283511
    Abstract: Composite materials for carbon dioxide (C02) capture that include: (1) a mesoporous carbon source; and (2) an in situ polymerized polymer that is associated with the mesoporous carbon source, where the in situ polymerized polymer is selected from the group consisting of thiol-based polymers, amine-based polymers, and combinations thereof. Methods of making the composite materials for C02 capture include: (1) associating a mesoporous carbon source with monomers, where the monomers are selected from the group consisting of thiol-based monomers, amine-based monomers, and combinations thereof; and (2) polymerizing the monomers in situ to form said composite materials. Further embodiments of the present invention pertain to methods of capturing C02 from an environment by associating the environment with one or more of the aforementioned composite materials.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: March 15, 2016
    Assignees: WILLIAM MARSH RICE UNIVERSITY, NALCO COMPANY
    Inventors: James M. Tour, Garry Chih-Chau Hwang, Jay R. Lomeda
  • Publication number: 20160001260
    Abstract: In some embodiments, the present disclosure pertains to materials for use in CO2 capture in high pressure environments. In some embodiments, the materials include a porous carbon material containing a plurality of pores for use in a high pressure environment. Additional embodiments pertain to methods of utilizing the materials of the present disclosure to capture CO2 from various environments. In some embodiments, the materials of the present disclosure selectively capture CO2 over hydrocarbon species in the environment.
    Type: Application
    Filed: August 24, 2015
    Publication date: January 7, 2016
    Applicant: William Marsh Rice University
    Inventors: James M. Tour, Desmond E. Schipper, Chih-Chau Hwang, Josiah Tour, Almaz S. Jalilov, Gedeng Ruan, Yilun Li
  • Publication number: 20150153472
    Abstract: Magnetic nanoparticles are utilized for magnetically detecting hydrocarbons in a geological structure. The magnetic nanoparticles generally include a core particle and a temperature responsive polymer associated with the core particle. The temperature responsive polymer may include polyacrylamides, polyethylene glycols, or combinations thereof. The temperature responsive polymer facilitates an agglomeration of the nanoparticles in a fluid at an organic/aqueous interface of the fluid, an organic phase of the fluid, or combinations thereof. The agglomeration may occur at a specific temperature or temperature range.
    Type: Application
    Filed: June 24, 2013
    Publication date: June 4, 2015
    Applicant: William Marsh Rice University
    Inventors: James M. Tour, Wei Lu, Chih-Chau Hwang
  • Publication number: 20150111018
    Abstract: In some embodiments, the present disclosure pertains to methods of capturing a gas from an environment by associating the environment with a porous carbon material that includes, without limitation, protein-derived porous carbon materials, carbohydrate-derived porous carbon materials, cotton-derived porous carbon materials, fat-derived porous carbon materials, waste-derived porous carbon materials, asphalt-derived porous carbon materials, coal-derived porous carbon materials, coke-derived porous carbon materials, asphaltene-derived porous carbon materials, oil product-derived porous carbon materials, bitumen-derived porous carbon materials, tar-derived porous carbon materials, pitch-derived porous carbon materials, anthracite-derived porous carbon materials, melamine-derived porous carbon materials, and combinations thereof. In some embodiments, the associating results in sorption of gas components (e.g., CO2, H2S, and combinations thereof) to the porous carbon material.
    Type: Application
    Filed: August 13, 2014
    Publication date: April 23, 2015
    Applicant: William Marsh Rice University
    Inventors: James M. Tour, Desmond E. Schipper, Chih-Chau Hwang, Josiah Tour, Almaz S. Jalilov, Gedeng Ruan
  • Publication number: 20150111024
    Abstract: In some embodiments, the present disclosure pertains to methods of capturing a gas from an environment by associating the environment (e.g., a pressurized environment) with a porous carbon material that comprises a plurality of pores and a plurality of nucleophilic moieties. In some embodiments, the associating results in sorption of gas components (e.g., CO2 or H2S) to the porous carbon materials. In some embodiments, the methods of the present disclosure also include a step of releasing captured gas components from porous carbon materials. In some embodiments, the releasing occurs without any heating steps by decreasing environmental pressure. In some embodiments, the methods of the present disclosure also include a step of disposing released gas components and reusing porous carbon materials. Additional embodiments of the present disclosure pertain to porous carbon materials that are used for gas capture.
    Type: Application
    Filed: August 13, 2014
    Publication date: April 23, 2015
    Applicant: William Marsh Rice University
    Inventors: James M. Tour, Chih-Chau Hwang, Desmond E. Schipper
  • Publication number: 20150101808
    Abstract: Methods for forming proppant pillars in a formation during formation fracturing include include periods of pumping a first fracturing fluid including a proppant and an aggregating composition including a reaction product of a phosphate compound or a plurality of phosphate and an amine, periods of pumping a second fracturing fluid excluding a proppant and an aggregating composition including a reaction product of a phosphate compound and periods of pumping a third fracturing fluid including an aggregating composition including a reaction product of a phosphate compound, where the pumping of the three fracturing fluids may be in any order and may involve continuous pumping, pulse pumping, or non-continuous pumping.
    Type: Application
    Filed: November 18, 2014
    Publication date: April 16, 2015
    Inventors: Rajesh K. Saini, Clayton S. Smith, Mathew M. Samuel, Kern L. Smith, Chih- Chau Hwang, Leonid Vigderman, Duane Treybig
  • Publication number: 20150068747
    Abstract: Compositions include (1) aggregating compositions capable of forming deformable partial or complete coatings on formation surfaces, formation particle surfaces, downhole fluid solid surfaces, and/or proppant surfaces, where the coatings increase aggregation and/or agglomeration propensities of the particles and surfaces to form particles clusters or pillars having deformable coatings, and (2) aggregation stabilizing and/or strengthening compositions capable of altering properties of the coated clusters or pillars to form consolidated, stabilized, and/or strengthened clusters or pillars. Methods for stabilizing aggregated particle clusters or pillars include (1) treating the particles with an aggregating composition to form aggregated clusters or pillars and (2) treating the aggregated particle clusters or pillars with a stabilizing or strengthening composition to form consolidated, stabilized, and/or strengthened clusters or pillars.
    Type: Application
    Filed: November 18, 2014
    Publication date: March 12, 2015
    Inventors: Chih-Chau Hwang, Rajesh K. Saini, Leonid Vigderman, Duane Treybig, Clayton S. Smith, Mathew M. Samuel, Kern L. Smith
  • Publication number: 20150056116
    Abstract: Composite materials and methods of preparing C02 capture include: (1) a porous solid support comprising a plurality of porous channels; and (2) a nucleophilic source associated with the porous channels of the porous solid support. The nucleophilic source is capable of converting the captured C02 to poly(C02). Methods of capturing C02 from an environment include associating the environment with the aforementioned composite materials to lead to the capture of C02 from the environment. Such methods may also include a step of releasing the captured C02 from the composite material. The associating step comprises a conversion of the captured C02 to poly(C02) in the composite material. A releasing step may also include a depolymerization of the formed poly(C02).
    Type: Application
    Filed: January 11, 2013
    Publication date: February 26, 2015
    Applicant: William Marsh Rice University
    Inventors: James M. Tour, Chih-Chau Hwang
  • Publication number: 20150050741
    Abstract: Various embodiments of the present disclosure pertain to nanocomposites for detecting hydrocarbons in a geological structure. In some embodiments, the nanocomposites include: a core particle; a polymer associated with the core particle; a sulfur-based moiety associated with the polymer; and a releasable probe molecule associated with the core particle, where the releasable probe molecule is releasable from the core particle upon exposure to hydrocarbons. Additional embodiments of the present disclosure pertain to methods of detecting hydrocarbons in a geological structure by utilizing the nanocomposites of the present disclosure.
    Type: Application
    Filed: March 25, 2013
    Publication date: February 19, 2015
    Applicant: William Marsh Rice University
    Inventors: James M. Tour, Chih-Chau Hwang, Wei Lu, Gedeng Ruan, Mason B. Tomson, Amy Kan, Lu Wang, Michael S. Wong, Gautam Kini, George J. Hirasaki, Clarence Miller