Patents by Inventor Chih-Chung Chen

Chih-Chung Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9130014
    Abstract: A method for fabricating shallow trench isolation structure is disclosed. The method includes the steps of: (a) providing a substrate; (b) forming a trench in the substrate; (c) forming a silicon layer in the trench; and (d) performing an oxidation process to partially transform a surface of the silicon layer into an oxide layer.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: September 8, 2015
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Keng-Jen Lin, Yu-Ren Wang, Chien-Liang Lin, Tsuo-Wen Lu, Wei-Jen Chen, Chih-Chung Chen
  • Patent number: 9117878
    Abstract: A method for manufacturing a semiconductor structure includes the following steps. First, a semiconductor substrate is provided and a patterned pad layer is formed on the semiconductor substrate so as to expose a portion of the semiconductor substrate. Then, the semiconductor substrate exposed from the patterned pad layer is etched away to form a trench inside the semiconductor substrate. A selectively-grown material layer is selectively formed on the surface of the trench, followed by filling a dielectric precursor material into the trench. Finally, a transformation process is carried out to concurrently transform the dielectric precursor material into a dielectric material and transform the selectively-grown material layer into an oxygen-containing amorphous material layer.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: August 25, 2015
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Keng-Jen Lin, Yu-Ren Wang, Chih-Chung Chen, Tsuo-Wen Lu, Tsai-Yu Wen
  • Patent number: 9101943
    Abstract: The present invention provides a centrifugal particle separation and detection device, which can separate and detect particles according to the particle size. The centrifugal particle separate and detection device is practiced with a centrifuge to separate particles, and can be applied to cancer cell detection, blood lymphocyte isolation, tissue engineering, polynucleotide hybridization, microorganism separation and detection and fine chemical purification.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: August 11, 2015
    Assignee: NATIONAL TSING HUA UNIVERSITY
    Inventors: Da-Jeng Yao, Chih-Chung Chen
  • Publication number: 20150178436
    Abstract: Various techniques are provided to perform clock assignments in a programmable logic device (PLD). In one example, a computer-implemented method includes receiving a design identifying operations to be performed by a programmable logic device (PLD), synthesizing the design into a plurality of components of the PLD configured to perform the operations, and performing a simulated annealing process to determine a layout of the components in the PLD based on a system cost including a clock assignment cost for global clock signals of the PLD. Additional methods, systems, machine-readable mediums, and other techniques are also provided.
    Type: Application
    Filed: December 20, 2013
    Publication date: June 25, 2015
    Applicant: LATTICE SEMICONDUCTOR CORPORATION
    Inventors: CHIH-CHUNG CHEN, JUN ZHAO, YINAN SHEN
  • Publication number: 20150140780
    Abstract: A method for fabricating shallow trench isolation structure is disclosed. The method includes the steps of: (a) providing a substrate; (b) forming a trench in the substrate; (c) forming a silicon layer in the trench; and (d) performing an oxidation process to partially transform a surface of the silicon layer into an oxide layer.
    Type: Application
    Filed: November 21, 2013
    Publication date: May 21, 2015
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Keng-Jen Lin, Yu-Ren Wang, Chien-Liang Lin, Tsuo-Wen Lu, Wei-Jen Chen, Chih-Chung Chen
  • Patent number: 9000794
    Abstract: An elastic micro high frequency probe includes a conductor, which includes a stationary body and a movable body. The stationary body has a conductive terminal, a contacting end, and a guider. The movable body has a conductive terminal, a spring mechanism, and a guider. The spring mechanism is connected to the stationary body and to one conductive terminal. The second guider connects to the spring mechanism in such a manner that the compression direction of the spring mechanism is confined by a guiding rail. Since the width of the spring mechanism is not limited by the first and second guiders, the width of the spring mechanism can be enlarged to maximize within limited space. Therefore, the HF probe as a whole can have shortest length while acquiring the predetermined total length of the elastic stroke, such that the transmission performance of the high frequency signals can be effectively enhanced.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: April 7, 2015
    Assignee: MPI Corporation
    Inventors: Yi-Lung Lee, Chih-Chung Chen, Tsung-Yi Chen, Horng-Kuang Fan
  • Publication number: 20150028870
    Abstract: A two-channel magnetic resonance tomography system is provided with a regulation circuit for an amplification system in order to be able to take into account different load situations of the MRI system in a flexible and efficient manner. It is thus possible to improve the MRI measurements greatly if the MRI system is set to the respective load situation beforehand by an idle state measurement. The adaptation may optionally also be carried out during the MRI measurement. Therefore, a multiplicity of completely different load situations may be taken into account in an optimized manner by the regulation circuit.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 29, 2015
    Inventors: Chih-Chung Chen, Klaus Huber, Johannes Reinschke, Claus Seisenberger, Markus Vester, Christian Wünsch
  • Publication number: 20150023818
    Abstract: An air compression system includes an air compression device and a cooling structure. The air compression device includes a liquid-cooled motor and a compressor. The cooling includes a radiator, a cooler, a first liquid conveying tube, a second liquid conveying tube, a third liquid conveying tube, a fourth liquid conveying tube and a cooling liquid. The radiator interconnects the compressor for cooling a lubricating liquid in the compressor; the first liquid conveying tube interconnects the radiator and the cooler; the second liquid conveying tube interconnects the radiator and the cooler; the third liquid conveying tube interconnects the liquid-cooled motor and the cooler; the fourth liquid conveying tube interconnects the liquid-cooled motor and the cooler; and the cooling liquid is filled into the cooler, so as to reduce the space occupied by the cooling structure.
    Type: Application
    Filed: July 14, 2014
    Publication date: January 22, 2015
    Inventors: Feng-Yung LIN, Chih-Chung CHEN, Li-Yung YAN
  • Patent number: 8921238
    Abstract: A method for processing a high-k dielectric layer includes the following steps. A semiconductor substrate is provided, and a high-k dielectric layer is formed thereon. The high-k dielectric layer has a crystalline temperature. Subsequently, a first annealing process is performed, and a process temperature of the first annealing process is substantially smaller than the crystalline temperature. A second annealing process is performed, and a process temperature of the second annealing process is substantially larger than the crystalline temperature.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: December 30, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Shao-Wei Wang, Yu-Ren Wang, Chien-Liang Lin, Wen-Yi Teng, Tsuo-Wen Lu, Chih-Chung Chen, Ying-Wei Yen
  • Patent number: 8841181
    Abstract: A method for fabricating a semiconductor device is described. A gate layer, a C-doped first protective layer and a hard mask layer are formed on a substrate and then patterned to form a first stack in a first area and a second stack in a second area. A second protective layer is formed on the sidewalls of the first and the second stacks. A blocking layer is formed in the first area and a first spacer formed on the sidewall of the second protective layers on the sidewall of the second stack in the second area. A semiconductor compound is formed in the substrate beside the first spacer. The blocking layer and the first spacer are removed. The hard mask layer in the first stack and the second stack is removed.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: September 23, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Ying-Hung Chou, Shao-Hua Hsu, Chi-Horn Pai, Zen-Jay Tsai, Shih-Hao Su, Chun-Chia Chen, Shih-Chieh Hsu, Chih-Chung Chen
  • Publication number: 20140199854
    Abstract: A method of forming a film is provided. The method includes at least the following steps. A first substrate and a second substrate are provided in a batch processing system, wherein a first surface of the first substrate is adjacent to a second surface of the second substrate, the first surface of the first substrate has a first surface condition, the second surface of the second substrate has a second surface condition, and the first surface condition is different from the second surface condition. A pretreatment gas is provided to the surfaces of the substrates for transforming the first surface condition and the second surface condition to a third surface condition. A reaction gas is provided to form the film on the surfaces, having the third surface condition, of the substrates.
    Type: Application
    Filed: January 16, 2013
    Publication date: July 17, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Chung Chen, Tsuo-Wen Lu, Yu-Ren Wang
  • Publication number: 20140162431
    Abstract: A method for manufacturing a semiconductor structure includes the following steps. First, a semiconductor substrate is provided and a patterned pad layer is formed on the semiconductor substrate so as to expose a portion of the semiconductor substrate. Then, the semiconductor substrate exposed from the patterned pad layer is etched away to form a trench inside the semiconductor substrate. A selectively-grown material layer is selectively formed on the surface of the trench, followed by filling a dielectric precursor material into the trench. Finally, a transformation process is carried out to concurrently transform the dielectric precursor material into a dielectric material and transform the selectively-grown material layer into an oxygen-containing amorphous material layer.
    Type: Application
    Filed: December 11, 2012
    Publication date: June 12, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Keng-Jen Lin, Yu-Ren Wang, Chih-Chung Chen, Tsuo-Wen Lu, Tsai-Yu Wen
  • Publication number: 20140045249
    Abstract: The present invention provides a centrifugal particle separation and detection device, which can separate and detect particles according to the particle size. The centrifugal particle separate and detection device is practiced with a centrifuge to separate particles, and can be applied to cancer cell detection, blood lymphocyte isolation, tissue engineering, polynucleotide hybridization, microorganism separation and detection and fine chemical purification.
    Type: Application
    Filed: December 5, 2012
    Publication date: February 13, 2014
    Applicant: NATIONAL TSING HUA UNIVERSITY
    Inventors: Da-Jeng Yao, Chih-Chung Chen
  • Patent number: 8648518
    Abstract: A power driven component inside a compressor is disposed with a stator and rotors. The stator has an iron core in a circular ring and stator coils in a tightly wound manner. A vertical interval is formed between adjacent stator coils. A cover body is formed on the stator and a shield member that is formed with an upper portion along each stator coil and bending curve portions at two sides of the upper portion. Each bending curve portion is extended toward the interval from the upper portion. A sealed cover portion is connected between the bending curve portions of the upper portion and correspondingly seals each interval to reduce noise of the compressor and oil circulation rate.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: February 11, 2014
    Assignee: Rechi Precision Co., Ltd.
    Inventors: Wen-Ho Yu, Fu-Rong Chen, Hung-Ming Liao, Chih-Chung Chen
  • Patent number: 8587531
    Abstract: A touch input device includes a substrate, plural sensible conductive layers and plural first switch units. The substrate is provided with an upper surface, the sensible conductive layers are all configured on the upper surface and are arranged in columns and rows. The first switch units are configured on the substrate and are electrically connected with the sensible conductive layers. By the first switch units, same columns of the sensible conductive layers can conduct electrically with one another and same rows of the sensible conductive layers can conduct electrically with one another.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: November 19, 2013
    Assignee: Chunghwa Picture Tubes, Ltd.
    Inventors: Ming-Ta Hsieh, Chien-Ming Lin, Chia-Lin Liu, Chih-Chung Chen, Hsueh-Fang Yin
  • Patent number: 8536038
    Abstract: A manufacturing method for a metal gate includes providing a substrate having at least a semiconductor device with a conductivity type formed thereon, forming a gate trench in the semiconductor device, forming a work function metal layer having the conductivity type and an intrinsic work function corresponding to the conductivity type in the gate trench, and performing an ion implantation to adjust the intrinsic work function of the work function metal layer to a target work function.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: September 17, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Shao-Wei Wang, Yu-Ren Wang, Chien-Liang Lin, Wen-Yi Teng, Tsuo-Wen Lu, Chih-Chung Chen, Ying-Wei Yen, Yu-Min Lin, Chin-Cheng Chien, Jei-Ming Chen, Chun-Wei Hsu, Chia-Lung Chang, Yi-Ching Wu, Shu-Yen Chan
  • Publication number: 20130234216
    Abstract: A method for fabricating a semiconductor device is described. A gate layer, a C-doped first protective layer and a hard mask layer are formed on a substrate and then patterned to form a first stack in a first area and a second stack in a second area. A second protective layer is formed on the sidewalls of the first and the second stacks. A blocking layer is formed in the first area and a first spacer formed on the sidewall of the second protective layers on the sidewall of the second stack in the second area. A semiconductor compound is formed in the substrate beside the first spacer. The blocking layer and the first spacer are removed. The hard mask layer in the first stack and the second stack is removed.
    Type: Application
    Filed: March 7, 2012
    Publication date: September 12, 2013
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Ying-Hung Chou, Shao-Hua Hsu, Chi-Horn Pai, Zen-Jay Tsai, Shih-Hao Su, Chun-Chia Chen, Shih-Chieh Hsu, Chih-Chung Chen
  • Publication number: 20130089443
    Abstract: A power driven component inside a compressor is disposed with a stator and rotors. The stator has an iron core in a circular ring and a plurality of stator coils in concentrated winding manner. An interval vertically passing through is formed between adjacent stator coils. A cover body is formed on the stator and a shield member that is formed with an upper portion along each stator coil and bending curve portions at two sides of the upper portion. Each bending curve portion is extended toward the interval from the upper portion. A sealed cover portion is connected between the bending curve portions of the upper portion and correspondingly seals each interval to reduce noise of the compressor and oil circle rate.
    Type: Application
    Filed: October 5, 2011
    Publication date: April 11, 2013
    Inventors: Wen-Ho Yu, Fu-Rong Chen, Hung-Ming Liao, Chih-Chung Chen
  • Publication number: 20130072030
    Abstract: A method for processing a high-k dielectric layer includes the following steps. A semiconductor substrate is provided, and a high-k dielectric layer is formed thereon. The high-k dielectric layer has a crystalline temperature. Subsequently, a first annealing process is performed, and a process temperature of the first annealing process is substantially smaller than the crystalline temperature. A second annealing process is performed, and a process temperature of the second annealing process is substantially larger than the crystalline temperature.
    Type: Application
    Filed: September 19, 2011
    Publication date: March 21, 2013
    Inventors: Shao-Wei Wang, Yu-Ren Wang, Chien-Liang Lin, Wen-Yi Teng, Tsuo-Wen Lu, Chih-Chung Chen, Ying-Wei Yen
  • Patent number: D681634
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: May 7, 2013
    Assignee: Cheng Uei Precision Industry Co., Ltd.
    Inventor: Chih-Chung Chen