Patents by Inventor Chih-Hsuan Lin

Chih-Hsuan Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11520620
    Abstract: A test path coordination method includes obtaining information of a number of products to be tested, obtaining information of each test device, and planning a test path of each product according to a preset rule according to the information of the products and the information of each test device. The information of the products includes the number of the products, test items of each product, and test devices required for testing the test items. The information of each test device includes whether the test device is currently testing a product and test information of the product currently being tested. The test information of the product includes a length of time the product has been tested and a test result. The test path includes a test sequence of each product and a test sequence of the test items of each product.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: December 6, 2022
    Assignee: Fulian Precision Electronics (Tianjin) Co., LTD.
    Inventors: Chih-Hsuan Lin, Shang-Yi Lin
  • Publication number: 20220367269
    Abstract: The present disclosure provides embodiments of a semiconductor device. In one embodiment, the semiconductor device includes a gate structure, a source/drain feature adjacent the gate structure, a first dielectric layer over the source/drain feature, an etch stop layer over the gate structure and the first dielectric layer, a second dielectric layer over the etch stop layer, a source/drain contact that includes a first portion extending through the first dielectric layer and a second portion extending through the etch stop layer and the second dielectric layer, a metal silicide layer disposed between the second portion and etch stop layer, and a metal nitride layer disposed between the first portion and the first dielectric layer.
    Type: Application
    Filed: July 20, 2022
    Publication date: November 17, 2022
    Inventors: Chih-Hsuan Lin, Xi-Zong Chen, Chih-Teng Liao
  • Patent number: 11503739
    Abstract: An electronic apparatus with a cooling system includes a chassis having a mounting slot; a heat exchanger disposed in the chassis; a removable device is disposed in the mounting slot, and includes a housing and a first pump disposed in the housing; a tube is connected to the heat exchanger and the first pump and a sliding mechanism is disposed in the chassis, and connected to the tube. When the removable device is moved to a mounting location, the tube drives the sliding mechanism to a storage location. When the removable device is moved to a detachable location, the tube drives the sliding mechanism to an extension location, wherein the extension location is closer to the mounting slot than the storage location.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: November 15, 2022
    Assignee: Nanning FuLian FuGui Precision Industrial Co., Ltd.
    Inventor: Chih-Hsuan Lin
  • Patent number: 11476207
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a semiconductor substrate and a gate disposed on the semiconductor substrate. The semiconductor device structure also includes a source doped region and a drain doped region on two opposite sides of the gate. The semiconductor device structure further includes a source protective circuit and a drain protective circuit. From a side perspective view, a first drain conductive element of the source protective circuit partially overlaps a first source conductive element of the drain protective circuit.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: October 18, 2022
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Jian-Hsing Lee, Shao-Chang Huang, Chih-Hsuan Lin, Yu-Kai Wang, Karuna Nidhi, Hwa-Chyi Chiou
  • Publication number: 20220319993
    Abstract: A method of manufacturing a semiconductor device includes forming a first dielectric layer over a substrate, forming a metal layer in the first dielectric layer, forming an etch stop layer on a surface of the first dielectric layer and the metal layer, removing portions of the metal layer and the etch stop layer to form a recess in the metal layer, and forming a tungsten plug in the recess. The recess is spaced apart from a bottom surface of the etch stop layer.
    Type: Application
    Filed: March 31, 2021
    Publication date: October 6, 2022
    Inventors: Chih-Hsuan LIN, Hsi Chung CHEN, Ji-Ling WU, Chih-Teng LIAO
  • Publication number: 20220304190
    Abstract: An electronic apparatus with a cooling system includes a chassis having a mounting slot; a heat exchanger disposed in the chassis; a removable device is disposed in the mounting slot, and includes a housing and a first pump disposed in the housing; a tube is connected to the heat exchanger and the first pump and a sliding mechanism is disposed in the chassis, and connected to the tube. When the removable device is moved to a mounting location, the tube drives the sliding mechanism to a storage location. When the removable device is moved to a detachable location, the tube drives the sliding mechanism to an extension location, wherein the extension location is closer to the mounting slot than the storage location.
    Type: Application
    Filed: March 18, 2021
    Publication date: September 22, 2022
    Inventor: CHIH-HSUAN LIN
  • Publication number: 20220285932
    Abstract: A protection circuit including a detection circuit, a current discharge element, a first transistor, and a second transistor is provided. The detection circuit is coupled between a first pad and a second pad to detect ESD events. In response to an ESD event, the detection circuit sets the detection signal to a predetermined level. The current discharge element is coupled between the first and second pads. In response to the detection signal being at the predetermined level, the current discharge element is turned on so that the ESD current passes through the current discharge element. The first transistor is coupled between a core circuit and the second pad. The second transistor is coupled between the first transistor and the second pad. In response to the detection signal being at the predetermined level, the second transistor is turned on to turn off the first transistor.
    Type: Application
    Filed: March 8, 2021
    Publication date: September 8, 2022
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Chih-Hsuan LIN, Shao-Chang HUANG, Yeh-Ning JOU, Hwa-Chyi CHIOU, Ching-Ho LI
  • Publication number: 20220238522
    Abstract: A method includes forming a source/drain region for a transistor, forming a first inter-layer dielectric over the source/drain region, and forming a lower source/drain contact plug over and electrically coupling to the source/drain region. The lower source/drain contact plug extends into the first inter-layer dielectric. The method further includes depositing an etch stop layer over the first inter-layer dielectric and the lower source/drain contact plug, depositing a second inter-layer dielectric over the etch stop layer, and performing an etching process to etch the second inter-layer dielectric, the etch stop layer, and an upper portion of the first inter-layer dielectric to form an opening, with a top surface and a sidewall of the lower source/drain contact plug being exposed to the opening, and forming an upper source/drain contact plug in the opening.
    Type: Application
    Filed: May 27, 2021
    Publication date: July 28, 2022
    Inventors: Ying-Yu Lai, Chih-Hsuan Lin, Hsi Chung Chen, Chih-Teng Liao
  • Patent number: 11387649
    Abstract: An operating circuit is provided. A first N-type transistor determines whether to create an open circuit between a core circuit and a ground terminal according to the voltage level of a specific node. An electrostatic discharge (ESD) protection circuit is coupled between an input/output pad and the core circuit to prevent an ESD current from passing through the core circuit. The ESD protection circuit includes a detection circuit and a releasing element. The detection circuit determines whether there is an ESD event at the input/output pad and generates a first detection signal according to the detection of the ESD event at the input/output pad. The releasing element provides a release path according to the first detection signal to release the ESD current. A control circuit controls the voltage level of the specific node according to the first detection signal.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: July 12, 2022
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Shao-Chang Huang, Li-Fan Chen, Ching-Ho Li, Ting-You Lin, Chun-Chih Chen, Kai-Chieh Hsu, Chih-Hsuan Lin, Yu-Kai Wang
  • Publication number: 20220190106
    Abstract: A semiconductor device includes at least one transistor, a shallow well region, a guard ring, and a plurality of first and second doped regions. The transistor is on a substrate and includes a source structure, a gate structure, and a drain structure. The shallow well region surrounds the transistor. The shallow well region has a first conductivity type. The guard ring surrounds the shallow well region. The guard ring has the first conductivity type. The first and second doped regions are disposed on the guard ring and surround the well region. The first doped regions and the second doped regions are alternately arranged in a shape of a loop. Each of the first doped regions and each of the second doped regions have opposite conductivity types.
    Type: Application
    Filed: December 14, 2020
    Publication date: June 16, 2022
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Karuna NIDHI, Chih-Hsuan LIN, Jian-Hsing LEE, Hwa-Chyi CHIOU
  • Publication number: 20220051940
    Abstract: The present disclosure provides embodiments of a semiconductor device. In one embodiment, the semiconductor device includes a gate structure, a source/drain feature adjacent the gate structure, a first dielectric layer over the source/drain feature, an etch stop layer over the gate structure and the first dielectric layer, a second dielectric layer over the etch stop layer, a source/drain contact that includes a first portion extending through the first dielectric layer and a second portion extending through the etch stop layer and the second dielectric layer, a metal silicide layer disposed between the second portion and etch stop layer, and a metal nitride layer disposed between the first portion and the first dielectric layer.
    Type: Application
    Filed: January 6, 2021
    Publication date: February 17, 2022
    Inventors: Chih-Hsuan Lin, Xi-Zong Chen, Chih-Teng Liao
  • Publication number: 20220052175
    Abstract: A semiconductor structure includes a substrate, a conductive region, a first insulation layer, a second insulation layer, a gate structure, a low-k spacer, a gate contact, and a conductive region contact. The low-k spacer is formed between a sidewall of the gate structure and the first insulation layer. The gate contact is landed on a top surface of the gate structure. A proximity distance between a sidewall of the gate contact and the conductive region contact along a top surface of the second insulation layer is in a range of from about 4 nm to about 7 nm. A method for manufacturing a semiconductor structure is also provided.
    Type: Application
    Filed: June 8, 2021
    Publication date: February 17, 2022
    Inventors: Chih-Hsuan LIN, Hsi Chung CHEN, Chih-Teng LIAO
  • Patent number: 11196249
    Abstract: An electrostatic discharge (ESD) blocking circuit including an internal circuit, a first Schottky diode, and an ESD releasing element is provided. The first Schottky diode is coupled between a specific node and the internal circuit. The ESD releasing element is coupled between the specific node and the first power terminal. In response to an ESD event occurring at the specific node, the ESD releasing element is turned on to release the ESD current from the specific node to the first power terminal.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: December 7, 2021
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Yeh-Ning Jou, Jian-Hsing Lee, Shao-Chang Huang, Chih-Hsuan Lin, Hwa-Chyi Chiou
  • Publication number: 20210357251
    Abstract: A test path coordination method includes obtaining information of a number of products to be tested, obtaining information of each test device, and planning a test path of each product according to a preset rule according to the information of the products and the information of each test device. The information of the products includes the number of the products, test items of each product, and test devices required for testing the test items. The information of each test device includes whether the test device is currently testing a product and test information of the product currently being tested. The test information of the product includes a length of time the product has been tested and a test result. The test path includes a test sequence of each product and a test sequence of the test items of each product.
    Type: Application
    Filed: June 11, 2020
    Publication date: November 18, 2021
    Inventors: CHIH-HSUAN LIN, SHANG-YI LIN
  • Publication number: 20210328425
    Abstract: An electrostatic discharge (ESD) blocking circuit including an internal circuit, a first Schottky diode, and an ESD releasing element is provided. The first Schottky diode is coupled between a specific node and the internal circuit. The ESD releasing element is coupled between the specific node and the first power terminal. In response to an ESD event occurring at the specific node, the ESD releasing element is turned on to release the ESD current from the specific node to the first power terminal.
    Type: Application
    Filed: April 21, 2020
    Publication date: October 21, 2021
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Yeh-Ning JOU, Jian-Hsing LEE, Shao-Chang HUANG, Chih-Hsuan LIN, Hwa-Chyi CHIOU
  • Patent number: 11043486
    Abstract: A semiconductor structure includes a first P-well, a first P-type diffusion region, a first N-type diffusion region, a second P-type diffusion region, and a first poly-silicon layer. The first P-type diffusion region is deposited in the first P-well and coupled to a first electrode. The first N-well is adjacent to the P-well. The first N-type diffusion region is deposited in the first N-well. The second P-type diffusion region is deposited between the first P-type diffusion region and the first N-type diffusion region, which is deposited in the first N-well. The second P-type diffusion region and the first N-type diffusion region are coupled to a second electrode. The first poly-silicon layer is deposited on the first P-type diffusion region.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: June 22, 2021
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Chih-Hsuan Lin, Shao-Chang Huang, Jia-Rong Yeh, Yeh-Ning Jou, Hwa-Chyi Chiou
  • Patent number: 11022878
    Abstract: The present disclosure describes a method for improving post-photolithography critical dimension (CD) uniformity for features printed on a photoresist. A layer can be formed on one or more printed features and subsequently etched to improve overall CD uniformity across the features. For example the method includes a material layer disposed over a substrate and a photoresist over the material layer. The photoresist is patterned to form a first feature with a first critical dimension (CD) and a second feature with a second CD that is larger than the first CD. Further, a layer is formed with one or more deposition/etch cycles in the second feature to form a modified second CD that is nominally equal to the first CD.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: June 1, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co.. Ltd.
    Inventors: Xi-Zong Chen, Cha-Hsin Chao, Yi-Wei Chiu, Li-Te Hsu, Chih-Hsuan Lin
  • Publication number: 20210125943
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a semiconductor substrate and a gate disposed on the semiconductor substrate. The semiconductor device structure also includes a source doped region and a drain doped region on two opposite sides of the gate. The semiconductor device structure further includes a source protective circuit and a drain protective circuit. From a side perspective view, a first drain conductive element of the source protective circuit partially overlaps a first source conductive element of the drain protective circuit.
    Type: Application
    Filed: October 23, 2019
    Publication date: April 29, 2021
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Jian-Hsing LEE, Shao-Chang HUANG, Chih-Hsuan LIN, Yu-Kai WANG, Karuna NIDHI, Hwa-Chyi CHIOU
  • Publication number: 20210075215
    Abstract: An operating circuit is provided. A first N-type transistor determines whether to turn the path between a core circuit and a ground terminal on or off according to the voltage level of a specific node. An electrostatic discharge (ESD) protection circuit is coupled between an input/output pad and the core circuit to prevent an ESD current from passing through the core circuit. The ESD protection circuit includes a detection circuit and a releasing element. The detection circuit determines whether there is an ESD event at the input/output pad and generates a first detection signal according to the detection of the ESD event at the input/output pad. The releasing element provides a release path according to the first detection signal to release the ESD current. A control circuit controls the voltage level of the specific circuit according to the first detection signal.
    Type: Application
    Filed: September 11, 2019
    Publication date: March 11, 2021
    Applicant: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Shao-Chang Huang, Li-Fan Chen, Ching-Ho Li, Ting-You Lin, Chun-Chih Chen, Kai-Chieh Hsu, Chih-Hsuan Lin, Yu-Kai Wang
  • Patent number: 10879109
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a recess in a layer. The recess has two opposite first inner walls and two opposite second inner walls, the first inner walls are spaced apart by a first distance, the second inner walls are spaced apart by a second distance, and the first distance is less than the second distance. The method includes depositing a first covering layer in the recess. The first covering layer covering the first inner walls is thinner than the first covering layer covering the second inner walls. The method includes removing the first covering layer over the first inner walls and a bottom surface of the recess.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: December 29, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Xi-Zong Chen, Chih-Hsuan Lin, Cha-Hsin Chao, Yi-Wei Chiu, Li-Te Hsu