Patents by Inventor Chih-Kung Chang

Chih-Kung Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210183922
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip (IC). The IC comprises a first phase detection autofocus (PDAF) photodetector and a second PDAF photodetector in a substrate. A first electromagnetic radiation (EMR) diffuser is disposed along a back-side of the substrate and within a perimeter of the first PDAF photodetector. The first EMR diffuser is spaced a first distance from a first side of the first PDAF photodetector and a second distance less than the first distance from a second side of the first PDAF photodetector. A second EMR diffuser is disposed along the back-side of the substrate and within a perimeter of the second PDAF photodetector. The second EMR diffuser is spaced a third distance from a first side of the second PDAF photodetector and a fourth distance less than the third distance from a second side of the second PDAF photodetector.
    Type: Application
    Filed: September 14, 2020
    Publication date: June 17, 2021
    Inventors: Keng-Yu Chou, Chun-Hao Chuang, Kazuaki Hashimoto, Wei-Chieh Chiang, Cheng Yu Huang, Wen-Hau Wu, Chih-Kung Chang
  • Publication number: 20200403023
    Abstract: Various embodiments of the present application are directed towards an image sensor including a wavelength tunable narrow band filter, as well as methods for forming the image sensor. In some embodiments, the image sensor includes a substrate, a first photodetector, a second photodetector, and a filter. The first and second photodetectors neighbor in the substrate. The filter overlies the first and second photodetectors and includes a first distributed Bragg reflector (DBR), a second DBR, and a first interlayer between the first and second DBRs. A thickness of the first interlayer has a first thickness value overlying the first photodetector and a second thickness value overlying the second photodetector. In some embodiments, the filter is limited to a single interlayer. In other embodiments the filter further includes a second interlayer defining columnar structures embedded in the first interlayer and having a different refractive index than the first interlayer.
    Type: Application
    Filed: October 16, 2019
    Publication date: December 24, 2020
    Inventors: Cheng Yu Huang, Chun-Hao Chuang, Kazuaki Hashimoto, Keng-Yu Chou, Wei-Chieh Chiang, Wen-Hau Wu, Chih-Kung Chang
  • Publication number: 20200098801
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip has an image sensor within a substrate. A first dielectric has an upper surface that extends over a first side of the substrate and over one or more trenches within the first side of the substrate. The one or more trenches laterally surround the image sensor. An internal reflection structure arranged over the upper surface of the first dielectric. The internal reflection structure is configured to reflect radiation exiting from the substrate back into the substrate.
    Type: Application
    Filed: November 26, 2019
    Publication date: March 26, 2020
    Inventors: Keng-Yu Chou, Chun-Hao Chuang, Chien-Hsien Tseng, Kazuaki Hashimoto, Wei-Chieh Chiang, Cheng Yu Huang, Wen-Hau Wu, Chih-Kung Chang, Jhy-Jyi Sze
  • Publication number: 20200098813
    Abstract: In some embodiments, an image sensor is provided. The image sensor includes a photodetector disposed in a semiconductor substrate. A wave guide filter having a substantially planar upper surface is disposed over the photodetector. The wave guide filter includes a light filter disposed in a light filter grid structure. The light filter includes a first material that is translucent and has a first refractive index. The light filter grid structure includes a second material that is translucent and has a second refractive index less than the first refractive index.
    Type: Application
    Filed: May 20, 2019
    Publication date: March 26, 2020
    Inventors: Cheng Yu Huang, Chun-Hao Chuang, Chien-Hsien Tseng, Kazuaki Hashimoto, Keng-Yu Chou, Wei-Chieh Chiang, Wen-Chien Yu, Ting-Cheng Chang, Wen-Hau Wu, Chih-Kung Chang
  • Patent number: 10510795
    Abstract: In some embodiments, the present disclosure relates to an image sensor integrated chip. The integrated chip has an image sensing element arranged within a substrate. A first dielectric is disposed in one or more trenches within a first side of the substrate. The one or more trenches laterally surround the image sensing element. The substrate includes a recessed portion arranged along the first side of the substrate and defined by second sidewalls of the substrate directly over the image sensing element. The second sidewalls of the substrate are angled to meet at a point disposed along a horizontal plane that intersects the first dielectric within the one or more trenches.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: December 17, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Keng-Yu Chou, Chun-Hao Chuang, Chien-Hsien Tseng, Kazuaki Hashimoto, Wei-Chieh Chiang, Cheng Yu Huang, Wen-Hau Wu, Chih-Kung Chang, Jhy-Jyi Sze
  • Publication number: 20190378863
    Abstract: In some embodiments, the present disclosure relates to an image sensor integrated chip. The integrated chip has an image sensing element arranged within a substrate. A first dielectric is disposed in one or more trenches within a first side of the substrate. The one or more trenches laterally surround the image sensing element. The substrate includes a recessed portion arranged along the first side of the substrate and defined by second sidewalls of the substrate directly over the image sensing element. The second sidewalls of the substrate are angled to meet at a point disposed along a horizontal plane that intersects the first dielectric within the one or more trenches.
    Type: Application
    Filed: July 19, 2019
    Publication date: December 12, 2019
    Inventors: Keng-Yu Chou, Chun-Hao Chuang, Chien-Hsien Tseng, Kazuaki Hashimoto, Wei-Chieh Chiang, Cheng Yu Huang, Wen-Hau Wu, Chih-Kung Chang, Jhy-Jyi Sze
  • Patent number: 10367023
    Abstract: In some embodiments, the present disclosure relates to an image sensor integrated chip. The integrated chip has an image sensing element arranged within a pixel region of a substrate. A first dielectric is disposed in trenches within a first side of the substrate. The trenches are defined by first sidewalls disposed on opposing sides of the pixel region. An internal reflection enhancement structure is arranged along the first side of the substrate and is configured to reflect radiation exiting from the substrate back into the substrate.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: July 30, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Keng-Yu Chou, Chun-Hao Chuang, Chien-Hsien Tseng, Kazuaki Hashimoto, Wei-Chieh Chiang, Cheng Yu Huang, Wen-Hau Wu, Chih-Kung Chang, Jhy-Jyi Sze
  • Patent number: 10069188
    Abstract: A communication device includes a first connector, a first radio frequency unit, a first transmission line and a first antenna. The first radio frequency (RF) unit is connected to the first connector, the first transmission line has a first terminal and a second terminal, the first terminal of the first transmission line is connected to the first connector, and the first antenna is contacted and electrically coupled to the second terminal of the first transmission line. The first RF unit is configured to generate a first RF signal. The first terminal of the first transmission line is configured to receive the first RF signal, and the first transmission line is configured to transmit the first RF signal from the first terminal of the first transmission line to the second terminal of the first transmission line. The first antenna is configured to send the first RF signal.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: September 4, 2018
    Assignee: JIENG TAI INTERNATIONAL ELECTRONIC CORP.
    Inventors: Yu-Pang Chou, Chih-Kung Chang, Jyh-Hui Chang
  • Publication number: 20170215151
    Abstract: A communication device includes an antenna unit, a sensing unit and a radio frequency unit. The antenna unit is configured to send a radio frequency signal. The sensing unit is coupled to a ground terminal through a capacitor and configured to sense a first capacitance through the antenna unit. The radio frequency unit is configured to generate the radio frequency signal, and to adjust energy of the radio frequency signal to a first energy according to the first capacitance. When the energy if the radio frequency signal is the first energy, the sensing unit is configured to sense a second capacitance through the antenna unit. The radio frequency unit is configured to adjust the energy of the radio frequency signal from the first energy to a second energy according to the second capacitance.
    Type: Application
    Filed: May 30, 2016
    Publication date: July 27, 2017
    Inventors: Yu-Pang CHOU, Pei-Zong RAO, Chih-Kung CHANG
  • Patent number: 9559137
    Abstract: The invention provides a color filter of an illumination image sensor and a method for fabricating the same. A color filter of an illumination image sensor includes a light shield portion constructed by a plurality of grid photoresist patterns, wherein the light shield portion covers a back side surface of the silicon wafer in a periphery region of an illumination image sensor chip.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: January 31, 2017
    Assignee: VISERA TECHNOLOGIES COMPANY LIMITED
    Inventors: Hao-Min Chen, Chen-Wei Lu, Chih-Kung Chang
  • Patent number: 9412775
    Abstract: Solid-state imaging devices and fabrication methods thereof are provided. The solid-state imaging device includes a substrate containing a first photoelectric conversion element and a second photoelectric conversion element. A color filter layer has a first color filter component and a second color filter component respectively disposed above the first and second photoelectric conversion elements. A light-shielding partition is disposed between the first and second color filter components. The light-shielding partition has a height lower than that of the first and second color filter components. A buffer layer is disposed between the first and second color filter components and above the light-shielding partition. The buffer layer has a refractive index lower than that of the color filter layer.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: August 9, 2016
    Assignee: VISERA TECHNOLOGIES COMPANY LIMITED
    Inventors: Chi-Han Lin, Chih-Kung Chang, Yu-Kun Hsiao, Zong-Ru Tu
  • Patent number: 9281333
    Abstract: A solid-state imaging device is provided. The solid-state imaging device includes a substrate containing a plurality of photoelectric conversion elements. A color filter layer is disposed above the photoelectric conversion elements. A light shielding layer is disposed between the color filter layer and substrate. The light-shielding layer has a plurality of first light shielding partitions extended along a first direction and a plurality of second light shielding partitions extended along a second direction perpendicular to the first direction. The first light shielding partitions have different dimensions along the second direction and the second light shielding partitions have different dimensions along the first direction.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: March 8, 2016
    Assignee: VisEra TECHNOLOGIES COMPANY LIMITED
    Inventors: Chi-Han Lin, Chih-Kung Chang, Hsin-Wei Mao
  • Publication number: 20150318320
    Abstract: A solid-state imaging device is provided. The solid-state imaging device includes a substrate containing a plurality of photoelectric conversion elements. A color filter layer is disposed above the photoelectric conversion elements. A light shielding layer is disposed between the color filter layer and substrate. The light-shielding layer has a plurality of first light shielding partitions extended along a first direction and a plurality of second light shielding partitions extended along a second direction perpendicular to the first direction. The first light shielding partitions have different dimensions along the second direction and the second light shielding partitions have different dimensions along the first direction.
    Type: Application
    Filed: May 1, 2014
    Publication date: November 5, 2015
    Applicant: VisEra Technologies Company Limited
    Inventors: Chi-Han LIN, Chih-Kung CHANG, Hsin-Wei MAO
  • Publication number: 20150270298
    Abstract: Solid-state imaging devices and fabrication methods thereof are provided. The solid-state imaging device includes a substrate containing a first photoelectric conversion element and a second photoelectric conversion element. A color filter layer has a first color filter component and a second color filter component respectively disposed above the first and second photoelectric conversion elements. A light-shielding partition is disposed between the first and second color filter components. The light-shielding partition has a height lower than that of the first and second color filter components. A buffer layer is disposed between the first and second color filter components and above the light-shielding partition. The buffer layer has a refractive index lower than that of the color filter layer.
    Type: Application
    Filed: March 20, 2014
    Publication date: September 24, 2015
    Applicant: VisEra Technologies Company Limited
    Inventors: Chi-Han LIN, Chih-Kung CHANG, Yu-Kun HSIAO, Zong-Ru TU
  • Publication number: 20150091115
    Abstract: An imaging device is provided. The imaging device includes a substrate containing a first photodiode and a second photodiode formed thereon. A photoelectric conversion layer including a first zone and a second zone is disposed above the substrate. Further, an insulating partition is disposed between the first zone and the second zone of the photoelectric conversion layer. A first electrode is disposed under the first zone and a second electrode is disposed under the second zone of the photoelectric conversion layer. In addition, an electrical interconnection is disposed on the photoelectric conversion layer.
    Type: Application
    Filed: October 2, 2013
    Publication date: April 2, 2015
    Applicant: VisEra Technologies Company Limited
    Inventors: Chi-Han LIN, Chih-Kung CHANG, Hsin-Wei MAO
  • Publication number: 20140339615
    Abstract: A back surface illuminated image sensor is provided. The back surface illuminated image sensor includes: a first passivation layer disposed on the photodiode array; an oxide grid disposed on the first passivation layer and forming a plurality of holes exposing the first passivation layer; a color filter array including a plurality of color filters filled into the holes, wherein the oxide grid has a refractive index smaller than that of plurality of color filters; and a metal grid aligned to the oxide grid, wherein the metal grid has an extinction coefficient greater than zero.
    Type: Application
    Filed: May 16, 2013
    Publication date: November 20, 2014
    Applicant: ViaEra Technologies Company Limited
    Inventors: Wei-Ko WANG, Chi-Han LIN, Zong-Ru TU, Yu-Kun HSIAO, Chih-Kung CHANG
  • Publication number: 20140339606
    Abstract: A back surface illuminated image sensor is provided. The back surface illuminated image sensor includes: a first passivation layer disposed on the photodiode array; an oxide grid disposed on the first passivation layer and forming a plurality of holes exposing the first passivation layer; a color filter array including a plurality of color filters filled into the holes, wherein the oxide grid has a refractive index smaller than that of plurality of color filters; and a metal grid aligned to the oxide grid, wherein the metal grid has an extinction coefficient greater than zero.
    Type: Application
    Filed: December 4, 2013
    Publication date: November 20, 2014
    Applicant: VisEra Technologies Company Limited
    Inventors: Chi-Han LIN, Zong-Ru TU, Yu-Kun HSIAO, Chih-Kung CHANG
  • Publication number: 20120113304
    Abstract: The invention provides a color filter of an illumination image sensor and a method for fabricating the same. A color filter of an illumination image sensor includes a light shield portion constructed by a plurality of grid photoresist patterns, wherein the light shield portion covers a back side surface of the silicon wafer in a periphery region of an illumination image sensor chip.
    Type: Application
    Filed: November 5, 2010
    Publication date: May 10, 2012
    Inventors: Hao-Min CHEN, Chen-Wei Lu, Chih-Kung Chang
  • Patent number: 8129762
    Abstract: A method is provided for processing a substrate. The substrate has at least one filter region, a plurality of bond pads, and a plurality of scribe lines arranged around the filter region and bond pads. A first planarization layer is formed above the substrate. The planarization layer has a substantially flat top surface overlying the filter region, the bond pads and the scribe lines. At least one color resist layer is formed over the first planarization layer and within the filter region while the first planarization layer covers the bond pads and the scribe lines.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: March 6, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Fu-Tien Weng, Yu-Kung Hsiao, Hung-Jen Hsu, Yi-Ming Dai, Chin Chen Kuo, Te-Fu Tseng, Chih-Kung Chang, Jack Deng, Chung-Sheng Hsiung, Bii-Junq Chang
  • Publication number: 20100164040
    Abstract: A microlens structure and a method of fabrication thereof are provided. The method comprises forming a layer of microlens material over a substrate, which has photo-sensitive elements formed therein. The microlens material, which comprises a photo-resist material, is exposed in accordance with a desired pattern a plurality of times. The energy used with each exposure process is less than the energy required if a single exposure is used. Furthermore, the masks used for each exposure may differ. In an embodiment, the masks are varied so as to create a notch in the upper corner of the microlens. The microlens structure may have a height less than about 0.5 um and/or a gap between microlenses less than about 0.2 um. In an embodiment, one or more dielectric layers having a combined thickness greater than about 3.5 um are interposed between the photo-sensitive elements and the microlenses.
    Type: Application
    Filed: March 11, 2010
    Publication date: July 1, 2010
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Chang Kao, Chih-Kung Chang, Fu-Tien Weng, Bii-Junq Chang