Patents by Inventor Chikayoshi Sumi

Chikayoshi Sumi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11965993
    Abstract: A measurement and imaging instrument capable of beamforming with high speed and high accuracy without approximate calculation. The instrument includes a reception unit which receives a wave arriving from a measurement object to generate a reception signal; and an instrument main body which performs a lateral modulation while superposing two waves in a two-dimensional case and three or four waves in a three-dimensional case in beamforming processing of the reception signal in which at least one wave arriving from the measurement object is processed as being transmitted or received in the axial direction or directions symmetric with respect to the axial direction to generate a multi-dimensional reception signal, performs Hilbert transform with respect to the multi-dimensional reception signal, and performs partial derivative processing or one-dimensional Fourier transform to generate analytic signals of the multi-dimensional reception signals of the two waves or the three or four waves.
    Type: Grant
    Filed: August 5, 2021
    Date of Patent: April 23, 2024
    Inventor: Chikayoshi Sumi
  • Publication number: 20210389439
    Abstract: A measurement and imaging instrument capable of beamforming with high speed and high accuracy without approximate calculation. The instrument includes a reception unit which receives a wave arriving from a measurement object to generate a reception signal; and an instrument main body which performs a lateral modulation while superposing two waves in a two-dimensional case and three or four waves in a three-dimensional case in beamforming processing of the reception signal in which at least one wave arriving from the measurement object is processed as being transmitted or received in the axial direction or directions symmetric with respect to the axial direction to generate a multi-dimensional reception signal, performs Hilbert transform with respect to the multi-dimensional reception signal, and performs partial derivative processing or one-dimensional Fourier transform to generate analytic signals of the multi-dimensional reception signals of the two waves or the three or four waves.
    Type: Application
    Filed: August 5, 2021
    Publication date: December 16, 2021
    Inventor: Chikayoshi SUMI
  • Patent number: 11125866
    Abstract: A measurement and imaging instrument capable of beamforming with high speed and high accuracy without approximate calculation. The instrument includes a reception unit which receives a wave arriving from a measurement object to generate a reception signal; and an instrument main body which performs a lateral modulation while superposing two waves in a two-dimensional case and three or four waves in a three-dimensional case in beamforming processing of the reception signal in which at least one wave arriving from the measurement object is processed as being transmitted or received in the axial direction or directions symmetric with respect to the axial direction to generate a multi-dimensional reception signal, performs Hilbert transform with respect to the multi-dimensional reception signal, and performs partial derivative processing or one-dimensional Fourier transform to generate analytic signals of the multi-dimensional reception signals of the two waves or the three or four waves.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: September 21, 2021
    Inventor: Chikayoshi Sumi
  • Patent number: 11026660
    Abstract: A displacement measurement apparatus includes an ultrasound sensor transmitting ultrasounds to an object in accordance with a drive signal, and detecting ultrasound echo signals generated in the object to output echo signals; a driving and processing unit supplying the drive signal to the sensor, and processing the echo signals from the sensor to obtain ultrasound echo data; and a controller controlling the driving and processing unit to yield an ultrasound echo data frame at each of plural different temporal phases based on the ultrasound echo data obtained by scanning the object. The ultrasound echo data has one of local single octant spectra, local single quadrant spectra, and local single half-band-sided spectra in a frequency domain. The ultrasound echo data is obtained from plural same bandwidth spectra.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: June 8, 2021
    Inventor: Chikayoshi Sumi
  • Patent number: 10624612
    Abstract: Beamforming method that allows a high speed and high accuracy beamforming with no approximate interpolations.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: April 21, 2020
    Assignee: CHIKAYOSHI SUMI
    Inventor: Chikayoshi Sumi
  • Publication number: 20190129026
    Abstract: A measurement and imaging instrument capable of beamforming with high speed and high accuracy without approximate calculation. The instrument includes a reception unit which receives a wave arriving from a measurement object to generate a reception signal; and an instrument main body which performs a lateral modulation while superposing two waves in a two-dimensional case and three or four waves in a three-dimensional case in beamforming processing of the reception signal in which at least one wave arriving from the measurement object is processed as being transmitted or received in the axial direction or directions symmetric with respect to the axial direction to generate a multi-dimensional reception signal, performs Hilbert transform with respect to the multi-dimensional reception signal, and performs partial derivative processing or one-dimensional Fourier transform to generate analytic signals of the multi-dimensional reception signals of the two waves or the three or four waves.
    Type: Application
    Filed: April 12, 2018
    Publication date: May 2, 2019
    Inventor: Chikayoshi Sumi
  • Patent number: 9993228
    Abstract: An accurate real-time measurement of a displacement vector is achieved on the basis of the proper beamforming that require a short time for obtaining one echo data frame without suffering affections by a tissue motion. The displacement measurement method includes the steps of: (a) yielding ultrasound echo data frames by scanning an object laterally or elevationally using an ultrasound beam steered electrically and/or mechanically with a single steering angle over an arbitrary three-dimensional orthogonal coordinate system involving existence of three axes of a depth direction, a lateral direction, and an elevational direction; and (b) calculating a displacement vector distribution by implementing a block matching on the predetermined ultrasound echo data frames yielded at more than two phases.
    Type: Grant
    Filed: January 7, 2015
    Date of Patent: June 12, 2018
    Inventor: Chikayoshi Sumi
  • Publication number: 20170311930
    Abstract: A displacement measurement apparatus includes an ultrasound sensor transmitting ultrasounds to an object in accordance with a drive signal, and detecting ultrasound echo signals generated in the object to output echo signals; a driving and processing unit supplying the drive signal to the sensor, and processing the echo signals from the sensor to obtain ultrasound echo data; and a controller controlling the driving and processing unit to yield an ultrasound echo data frame at each of plural different temporal phases based on the ultrasound echo data obtained by scanning the object. The ultrasound echo data has one of local single octant spectra, local single quadrant spectra, and local single half-band-sided spectra in a frequency domain. The ultrasound echo data is obtained from plural same bandwidth spectra.
    Type: Application
    Filed: July 17, 2017
    Publication date: November 2, 2017
    Inventor: Chikayoshi SUMI
  • Publication number: 20160157828
    Abstract: Beamforming method that allows a high speed and high accuracy beamforming with no approximate interpolations.
    Type: Application
    Filed: June 4, 2015
    Publication date: June 9, 2016
    Inventor: Chikayoshi SUMI
  • Patent number: 9326748
    Abstract: A clinical apparatus includes a storage to store strain data, strain rate data, or acceleration data measured in a ROI (region of interest); and a data processor to calculate a stress, a stress tensor, a stress tensor component, an inertia, a mean normal stress, a pressure, a mechanical source, an elastic constant, a visco elastic constant, a viscosity, or a density of an arbitrary point within the ROI. The data processor calculates the stress, the stress tensor, the stress tensor component, the inertia, the mean normal stress, the pressure, or the mechanical source based on an equation representing a relation between (i) the stress, the stress tensor, the stress tensor component, the inertia, the mean normal stress, the pressure, or the mechanical source, (ii) the elastic constant, the visco elastic constant, the viscosity, or the density, and (iii) the measured strain data, the strain rate data, or the acceleration data.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: May 3, 2016
    Inventor: Chikayoshi Sumi
  • Patent number: 9084559
    Abstract: A displacement measurement method for achieving, at each position of interest, high accuracy measurement of a displacement, a velocity and a strain in an actually generated beam direction by measuring the beam direction angle from ultrasound echo data. The method includes the steps of: generating an ultrasound echo data frame through scanning an object in a lateral direction with an ultrasound steered beam having one steering angle; calculating both a beam direction and a frequency in the beam direction based on an azimuth angle ?=tan?1(fy/fx), a polar angle ?=cos?1[fz/(fx2+fy2+fz2)1/2], and a frequency (fx2+fy2+fz2)1/2 in the case where first spectral moments calculated from local ultrasound echo data at plural different temporal phases are expressed by a three-dimensional frequency vector (fx, fy, fz); and calculating a displacement component in the beam direction at each position of interest generated between plural different temporal phases.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: July 21, 2015
    Inventor: Chikayoshi Sumi
  • Publication number: 20150112185
    Abstract: An accurate real-time measurement of a displacement vector is achieved on the basis of the proper beamforming that require a short time for obtaining one echo data frame without suffering affections by a tissue motion. The displacement measurement method includes the steps of: (a) yielding ultrasound echo data frames by scanning an object laterally or elevationally using an ultrasound beam steered electrically and/or mechanically with a single steering angle over an arbitrary three-dimensional orthogonal coordinate system involving existence of three axes of a depth direction, a lateral direction, and an elevational direction; and (b) calculating a displacement vector distribution by implementing a block matching on the predetermined ultrasound echo data frames yielded at more than two phases.
    Type: Application
    Filed: January 7, 2015
    Publication date: April 23, 2015
    Inventor: Chikayoshi SUMI
  • Patent number: 8956297
    Abstract: An accurate real-time measurement of a displacement vector is achieved on the basis of the proper beamforming that require a short time for obtaining one echo data frame without suffering affections by a tissue motion. The displacement measurement method includes the steps of: (a) yielding ultrasound echo data frames by scanning an object laterally or elevationally using an ultrasound beam steered electrically and/or mechanically with a single steering angle over an arbitrary three-dimensional orthogonal coordinate system involving existence of three axes of a depth direction, a lateral direction, and an elevational direction; and (b) calculating a displacement vector distribution by implementing a block matching on the predetermined ultrasound echo data frames yielded at more than two phases.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: February 17, 2015
    Inventor: Chikayoshi Sumi
  • Patent number: 8429982
    Abstract: The present invention provides elastic constant and visco elastic constant measurement apparatus etc. for measuring in the ROI in living tissues elastic constants such as shear modulus, Poisson's ratio, Lame constants, etc., visco elastic constants such as visco shear modulus, visco Poisson's ratio, visco Lame constants, etc. and density even if there exist another mechanical sources and uncontrollable mechanical sources in the object. The elastic constant and visco elastic constant measurement apparatus is equipped with storage of deformation data measured in the ROI, a calculation of elastic and visco elastic constants by calculating the shear modulus etc. at arbitrary point in the ROI from measured strain tensor data etc., wherein the calculation of the elastic and visco elastic constants numerically determines elastic constants etc. from the first order partial differential equations relating elastic constants etc. and strain tensor etc.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: April 30, 2013
    Inventor: Chikayoshi Sumi
  • Publication number: 20130046175
    Abstract: A displacement measurement method for achieving, at each position of interest, high accuracy measurement of a displacement, a velocity and a strain in an actually generated beam direction by measuring the beam direction angle from ultrasound echo data. The method includes the steps of: generating an ultrasound echo data frame through scanning an object in a lateral direction with an ultrasound steered beam having one steering angle; calculating both a beam direction and a frequency in the beam direction based on an azimuth angle ?=tan?1(fy/fx), a polar angle ?=cos?1[fz/(fx2+fy2+fz2)1/2], and a frequency (fx2+fy2+fz2)1/2 in the case where first spectral moments calculated from local ultrasound echo data at plural different temporal phases are expressed by a three-dimensional frequency vector (fx, fy, fz); and calculating a displacement component in the beam direction at each position of interest generated between plural different temporal phases.
    Type: Application
    Filed: March 20, 2012
    Publication date: February 21, 2013
    Inventor: Chikayoshi SUMI
  • Publication number: 20120278005
    Abstract: The present invention provides elastic constant and visco elastic constant measurement apparatus etc. for measuring in the ROI in living tissues elastic constants such as shear modulus, Poisson's ratio, Lame constants, etc., visco elastic constants such as visco shear modulus, visco Poisson's ratio, visco Lame constants, etc. and density even if there exist another mechanical sources and uncontrollable mechanical sources in the object. The elastic constant and visco elastic constant measurement apparatus is equipped with means of data storing 2 (storage of deformation data measured in the ROI 7 etc.) and means of calculating elastic and visco elastic constants 1 (calculator of shear modulus etc. at arbitrary point in the ROI from measured strain tensor data etc.), the means of calculating elastic and visco elastic constants numerically determines elastic constants etc. from the first order partial differential equations relating elastic constants etc. and strain tensor etc.
    Type: Application
    Filed: June 25, 2012
    Publication date: November 1, 2012
    Inventor: Chikayoshi SUMI
  • Patent number: 8211019
    Abstract: A clinical apparatus includes an ultrasound transducer having at least one oscillator, a transmitter circuit which supplies drive signals to the oscillator of the ultrasound transducer, a receiver circuit which receives echo signals outputted from the oscillator of the ultrasound transducer and which performs phase matching processing on the echo signals, and a data processor which yields superimposed echo signals by superimposing plural beams generated in different directions, where the plural beams are generated by performing at least one of (i) a mechanical scan, (ii) transmission and reception of steered beams in the different directions, and (iii) aperture synthesis in the different directions with respect to the received echo signals.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: July 3, 2012
    Inventor: Chikayoshi Sumi
  • Publication number: 20110204893
    Abstract: The present invention provides elastic constant and visco elastic constant measurement apparatus etc. for measuring in the ROI in living tissues elastic constants such as shear modulus, Poisson's ratio, Lame constants, etc., visco elastic constants such as visco shear modulus, visco Poisson's ratio, visco Lame constants, etc. and density even if there exist another mechanical sources and uncontrollable mechanical sources in the object. The elastic constant and visco elastic constant measurement apparatus is equipped with means of data storing 2 (storage of deformation data measured in the ROI 7 etc.) and means of calculating elastic and visco elastic constants 1 (calculator of shear modulus etc. at arbitrary point in the ROI from measured strain tensor data etc.), the means of calculating elastic and visco elastic constants numerically determines elastic constants etc. from the first order partial differential equations relating elastic constants etc. and strain tensor etc.
    Type: Application
    Filed: May 2, 2011
    Publication date: August 25, 2011
    Inventor: Chikayoshi SUMI
  • Publication number: 20110172538
    Abstract: An accurate real-time measurement of a displacement vector is achieved on the basis of the proper beamforming that require a short time for obtaining one echo data frame without suffering affections by a tissue motion. The displacement measurement method includes the steps of: (a) yielding ultrasound echo data frames by scanning an object laterally or elevationally using an ultrasound beam steered electrically and/or mechanically with a single steering angle over an arbitrary three-dimensional orthogonal coordinate system involving existence of three axes of a depth direction, a lateral direction, and an elevational direction; and (b) calculating a displacement vector distribution by implementing a block matching on the predetermined ultrasound echo data frames yielded at more than two phases.
    Type: Application
    Filed: July 9, 2010
    Publication date: July 14, 2011
    Inventor: Chikayoshi Sumi
  • Patent number: 7946180
    Abstract: The present invention provides elastic constant and visco elastic constant measurement apparatus etc. for measuring in the ROI in living tissues elastic constants such as shear modulus, Poisson's ratio, Lame constants, etc., visco elastic constants such as visco shear modulus, visco Poisson's ratio, visco Lame constants, etc. and density even if there exist another mechanical sources and uncontrollable mechanical sources in the object. The elastic constant and visco elastic constant measurement apparatus is equipped with means of data storing 2 (storage of deformation data measured in the ROI 7 etc.) and means of calculating elastic and visco elastic constants 1 (calculator of shear modulus etc. at arbitrary point in the ROI from measured strain tensor data etc.), the means of calculating elastic and visco elastic constants numerically determines elastic constants etc. from the first order partial differential equations relating elastic constants etc. and strain tensor etc.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: May 24, 2011
    Inventor: Chikayoshi Sumi