Patents by Inventor Chikyung Won

Chikyung Won has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8485330
    Abstract: A cable handling system mounted to a mobile robot to dispense and retrieve cable at zero tension includes a cable reel drive and a downstream tension roller drive that includes an idler. As a cable passes through the tension roller drive, position along the length of the cable and/or the cable speed is monitored accurately by a sensor attached to the idler. A system controller in communication with the sensor controls the cable reel drive and the tension roller drive for dispensing and retrieving cable downstream of the tension roller drive.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: July 16, 2013
    Assignee: iRobot Corporation
    Inventors: Robert Todd Pack, Tyson Sawyer, Chikyung Won, Grinnell More
  • Patent number: 8380350
    Abstract: An autonomous mobile robot system for bounded areas including a navigation beacon and an autonomous coverage robot. The navigation beacon has a gateway beacon emitter arranged to transmit a gateway marking emission with the navigation beacon disposed within a gateway between the first bounded area and an adjacent second bounded area. The autonomous coverage robot includes a beacon emission sensor responsive to the beacon emission, and a drive system configured to maneuver the robot about the first bounded area in a cleaning mode in which the robot is redirected in response to detecting the gateway marking emission. The drive system is also configured to maneuver the robot through the gateway into the second bounded area in a migration mode.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: February 19, 2013
    Assignee: iRobot Corporation
    Inventors: Daniel N. Ozick, Andrea M. Okerholm, Jeffrey W. Mammen, Michael J. Halloran, Paul E. Sandin, Chikyung Won
  • Patent number: 8365848
    Abstract: An articulated tracked vehicle that has a main section, which includes a main frame, and a forward section. The main frame has two sides and a front end, and includes a pair of parallel main tracks. Each main track includes a flexible continuous belt coupled to a corresponding side of the main frame. The forward section includes an elongated arm. One end of the arm is pivotally coupled to the main frame near the forward end of the main frame about a transverse axis that is generally perpendicular to the sides of the main frame. The arm has a length sufficiently long to allow the forward section to extend below the main section in at least some degrees of rotation of the arm, and a length shorter than the length of the main section. The center of mass of the main section is located forward of the rearmost point reached by the end of the arm in its pivoting about the transverse axis.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: February 5, 2013
    Assignee: iRobot Corporation
    Inventor: Chikyung Won
  • Patent number: 8359703
    Abstract: An autonomous coverage robot includes a body having at least one outer wall, a drive system disposed on the body and configured to maneuver the robot over a work surface, and a cleaning assembly carried by the body. The cleaning assembly includes first and second cleaning rollers rotatably coupled to the body, a suction assembly having a channel disposed adjacent at least one of the cleaning rollers, and a container in fluid communication with the channel. The container is configured to collect debris drawn into the channel. The suction assembly is configured to draw debris removed from the work surface by at least one of the cleaning rollers into the channel, and the container has a wall common with the at least one outer wall of the body.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: January 29, 2013
    Assignee: iRobot Corporation
    Inventors: Selma Svendsen, Daniel N. Ozick, Christopher M. Casey, Deepak Ramesh Kapoor, Tony L. Campbell, Chikyung Won, Christopher John Morse, Scott Thomas Burnett
  • Patent number: 8292007
    Abstract: A wheeled platform 100 is disclosed, which is characterized by high mobility and reliability, and which can be used in a wide range of applications including transport and robotic devices. The wheeled platform 100 has fore and aft body portions 130, 132, each body portion 130, 132 having first and second sides 106, 108. Overlapping wheels 112, 114, 116, 118 are rotatably attached to the first side 106 and overlapping wheels 120, 122, 124, 126 are rotatably attached to the second side 108. The fore body portion 130 can be connected to the aft body portion 132 via an articulation element 133.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: October 23, 2012
    Assignee: iRobot Corporation
    Inventors: Thomas L. DeFazio, David S. Barrett, Chikyung Won, Selma Svendson
  • Publication number: 20120261204
    Abstract: An articulated tracked vehicle that has a main frame includes a pair of parallel main tracks. Each main track includes a flexible continuous belt coupled to a corresponding side of the main frame. A forward section includes an elongated arm pivotally coupled to the main frame near the forward end of the main frame. The arm has a length sufficiently long to allow the forward section to extend below a main section in at least some degrees of rotation of the arm, and a length shorter than the length of the main section. The center of mass of the main section is located forward of the rearmost point reached by the end of the arm in its pivoting about a transverse axis. The main section is contained within the volume defined by the main tracks and is symmetrical about a horizontal plane, thereby allowing inverted operation of the robot.
    Type: Application
    Filed: March 19, 2012
    Publication date: October 18, 2012
    Applicant: IROBOT CORPORATION
    Inventor: Chikyung WON
  • Publication number: 20120185095
    Abstract: A mobile human interface robot that includes a base defining a vertical center axis and a forward drive direction and a holonomic drive system supported by the base. The drive system has first, second, and third driven drive wheels, each trilaterally spaced about the vertical center axis and having a drive direction perpendicular to a radial axis with respect to the vertical center axis. The robot further includes a controller in communication with the holonomic drive system, a torso supported above the base, and a touch sensor system in communication with the controller. The touch sensor system is responsive to human contact. The controller issues drive commands to the holonomic drive system based on a touch signal received from the touch sensor system.
    Type: Application
    Filed: February 22, 2011
    Publication date: July 19, 2012
    Applicant: iRobot Corporation
    Inventors: Michael Rosenstein, Chikyung Won, Geoffrey B. Lansberry, Steven V. Shamlian, Michael Halloran, Mark Chiappetta, Thomas P. Allen
  • Publication number: 20120185094
    Abstract: A mobile robot that includes a drive system, a controller in communication with the drive system, and a volumetric point cloud imaging device supported above the drive system at a height of greater than about one feet above the ground and directed to be capable of obtaining a point cloud from a volume of space that includes a floor plane in a direction of movement of the mobile robot. The controller receives point cloud signals from the imaging device and issues drive commands to the drive system based at least in part on the received point cloud signals.
    Type: Application
    Filed: February 22, 2011
    Publication date: July 19, 2012
    Applicant: iRobot Corporation
    Inventors: Michael Rosenstein, Michael Halloran, Steven V. Shamlian, Chikyung Won, Mark Chiappetta
  • Publication number: 20120185096
    Abstract: A method of operating a mobile robot to traverse a threshold includes detecting a threshold proximate the robot. The robot includes a holonomic drive system having first, second, and third drive elements configured to maneuver the robot omni-directionally. The method further includes moving the first drive element onto the threshold from a first side and moving the second drive element onto the threshold to place both the first and second drive elements on the threshold. The method includes moving the first drive element off a second side of the threshold, opposite to the first side of the threshold, and moving the third drive element onto the threshold, placing both the second and third drive elements on the threshold. The method includes moving both the second and third drive elements off the second side of the threshold.
    Type: Application
    Filed: February 22, 2011
    Publication date: July 19, 2012
    Applicant: iRobot Corporation
    Inventors: Michael Rosenstein, Steven V. Shamlian, Chikyung Won, Michael Halloran, Mark Chiappetta, Thomas P. Allen
  • Publication number: 20120182392
    Abstract: A method of object detection for a mobile robot includes emitting a speckle pattern of light onto a scene about the robot while maneuvering the robot across a work surface, receiving reflections of the emitted speckle pattern off surfaces of a target object in the scene, determining a distance of each reflecting surface of the target object, constructing a three-dimensional depth map of the target object, and classifying the target object.
    Type: Application
    Filed: February 22, 2011
    Publication date: July 19, 2012
    Applicant: iRobot Corporation
    Inventors: Justin H. Kearns, Orjeta Taka, Robert Todd Pack, Michael T. Rosenstein, Michael Halloran, Timothy S. Farlow, Steven V. Shamlian, Chikyung Won, Mark Chiappetta, Jasper Fourways Vicenti
  • Publication number: 20120173064
    Abstract: A coverage robot including a chassis, multiple drive wheel assemblies disposed on the chassis, and a cleaning assembly carried by the chassis. Each drive wheel assembly including a drive wheel assembly housing, a wheel rotatably coupled to the housing, and a wheel drive motor carried by the drive wheel assembly housing and operable to drive the wheel. The cleaning assembly including a cleaning assembly housing, a cleaning head rotatably coupled to the cleaning assembly housing, and a cleaning drive motor carried by cleaning assembly housing and operable to drive the cleaning head. The wheel assemblies and the cleaning assembly are each separately and independently removable from respective receptacles of the chassis as complete units.
    Type: Application
    Filed: December 8, 2011
    Publication date: July 5, 2012
    Inventors: Chikyung Won, Selma Svendsen, Paul E. Sandin, Scott Thomas Burnett, Deepak Ramesh Kapoor, Stephen A. Hickey, Robert Rizzari, Zivhthan A.C. Dubrovsky
  • Publication number: 20120173018
    Abstract: A mobile human interface robot that includes a drive system, a controller in communication with the dive system, and an electronic display supported above the drive system and in communication with the controller. The controller includes a central processing unit, a general purpose graphics processing unit, and memory in electrical communication with the central processing unit and the general purpose graphics processing unit. Moreover, the controller has a display operating state and a driving operating state. The controller executes graphics computations on the general purpose graphics processing unit for displaying graphics on the electronic display during the display operating state; and the controller executes mobility computations on the general purpose graphics processing unit for issuing commands to the drive system during the driving operating state.
    Type: Application
    Filed: September 23, 2011
    Publication date: July 5, 2012
    Applicant: iRobot Corporation
    Inventors: Thomas P. Allen, Justin H. Kearns, Orjeta Taka, Timothy S. Farlow, Robert Todd Pack, Chikyung Won, Michael T. Rosenstein, Michael Halloran, Steven V. Shamlian, Mark Chiappetta
  • Publication number: 20120097783
    Abstract: A cable handling system mounted to a mobile robot to dispense and retrieve cable at zero tension includes a cable reel drive and a downstream tension roller drive that includes an idler. As a cable passes through the tension roller drive, position along the length of the cable and/or the cable speed is monitored accurately by a sensor attached to the idler. A system controller in communication with the sensor controls the cable reel drive and the tension roller drive for dispensing and retrieving cable downstream of the tension roller drive.
    Type: Application
    Filed: October 24, 2011
    Publication date: April 26, 2012
    Inventors: Robert Todd Pack, Tyson Sawyer, Chikyung Won, Grinnell More
  • Publication number: 20120084937
    Abstract: A cleaning robot system including a robot and a robot maintenance station. The robot includes a robot body, a drive system, a cleaning assembly, and a cleaning bin carried by the robot body and configured to receive debris agitated by the cleaning assembly. The robot maintenance station includes a station housing configured to receive the robot for maintenance. The station housing has an evacuation passageway exposed to a top portion of the received robot. The robot maintenance station also includes an air mover in pneumatic communication with the evacuation passageway and a collection bin carried by the station housing and in pneumatic communication with the evacuation passageway. The station housing and the robot body fluidly connect the evacuation passageway to the cleaning bin of the received robot. The air mover evacuates debris held in the robot cleaning bin to the collection bin through the evacuation passageway.
    Type: Application
    Filed: December 16, 2011
    Publication date: April 12, 2012
    Applicant: IROBOT CORPORATION
    Inventors: Chikyung Won, Stephen A. Hickey, Mark Schnittman, Zivthan A. Dubrovsky, Selma Svendsen, Jed Lowry, David Swett, John Devlin
  • Patent number: 8113304
    Abstract: An articulated tracked vehicle that has a main section, which includes a main frame, and a forward section. The main frame has two sides and a front end, and includes a pair of parallel main tracks. Each main track includes a flexible continuous belt coupled to a corresponding side of the main frame. The forward section includes an elongated arm. One end of the arm is pivotally coupled to the main frame near the forward end of the main frame about a transverse axis that is generally perpendicular to the sides of the main frame. The arm has a length sufficiently long to allow the forward section to extend below the main section in at least some degrees of rotation of the arm, and a length shorter than the length of the main section. The center of mass of the main section is located forward of the rearmost point reached by the end of the arm in its pivoting about the transverse axis.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: February 14, 2012
    Assignee: iRobot Corporation
    Inventor: Chikyung Won
  • Publication number: 20110288684
    Abstract: A robot system includes a mobile robot having a controller executing a control system for controlling operation of the robot, a cloud computing service in communication with the controller of the robot, and a remote computing device in communication with the cloud computing service. The remote computing device communicates with the robot through the cloud computing service.
    Type: Application
    Filed: February 22, 2011
    Publication date: November 24, 2011
    Applicant: iRobot Corporation
    Inventors: Tim S. Farlow, Michael Rosenstein, Michael Halloran, Chikyung Won, Steven V. Shamlian, Mark Chiappetta
  • Patent number: 8042663
    Abstract: A cable handling system mounted to a mobile robot to dispense and retrieve cable at zero tension includes a cable reel drive and a downstream tension roller drive that includes an idler. As a cable passes through the tension roller drive, position along the length of the cable and/or the cable speed is monitored accurately by a sensor attached to the idler. A system controller in communication with the sensor controls the cable reel drive and the tension roller drive for dispensing and retrieving cable downstream of the tension roller drive.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: October 25, 2011
    Assignee: iRobot Corporation
    Inventors: Robert Todd Pack, Tyson Sawyer, Chikyung Won, Grinnell More
  • Publication number: 20110004339
    Abstract: A navigation beacon controls movement of a mobile robot in first and second areas. The navigation beacon includes a portable housing, a power source, and an emitter. The emitter is operable to emit a gateway marking emission when the robot is within a field of detection that extends between the areas. The gateway marking emission is detectable by the robot and prevents the robot from moving from one of the areas, through the field of detection, to the other of the areas. A switch is operable to switch the navigation beacon to be in an OFF mode in which the gateway beacon emitter is in an OFF state, a confinement mode in which the gateway beacon emitter is in an ON state, and a navigation mode in which the gateway beacon emitter is in the ON state and automatically switches to the OFF state in response to a predetermined condition.
    Type: Application
    Filed: July 1, 2010
    Publication date: January 6, 2011
    Applicant: IROBOT CORPORATION
    Inventors: Daniel N. OZICK, Andrea M. OKERHOLM, Jeffrey W. MAMMEN, Michael J. HALLORAN, Paul E. SANDIN, Chikyung WON
  • Publication number: 20100107355
    Abstract: A cleaning robot system including a robot and a robot maintenance station. The robot includes a robot body, a drive system, a cleaning assembly, and a cleaning bin carried by the robot body and configured to receive debris agitated by the cleaning assembly. The robot maintenance station includes a station housing configured to receive the robot for maintenance. The station housing has an evacuation passageway exposed to a top portion of the received robot. The robot maintenance station also includes an air mover in pneumatic communication with the evacuation passageway and a collection bin carried by the station housing and in pneumatic communication with the evacuation passageway. The station housing and the robot body fluidly connect the evacuation passageway to the cleaning bin of the received robot. The air mover evacuates debris held in the robot cleaning bin to the collection bin through the evacuation passageway.
    Type: Application
    Filed: January 14, 2010
    Publication date: May 6, 2010
    Applicant: IROBOT CORPORATION
    Inventors: Chikyung Won, Stephen A. Hickey, Mark Schnittman, Zivthan A. Dubrovsky, Selma Svendsen, Jed Lowry, David Swett, John Devlin
  • Publication number: 20100037418
    Abstract: An autonomous coverage robot includes a body, a drive system disposed on the body, and a cleaning assembly disposed on the body and configured to engage a floor surface while the robot is maneuvered across the floor surface. The cleaning assembly includes a driven cleaning roller, a cleaning bin disposed on the body for receiving debris agitated by the cleaning roller, and an air mover. The cleaning bin includes a cleaning bin body having a cleaning bin entrance disposed adjacent to the cleaning roller and a roller scraper disposed on the cleaning bin body for engaging the cleaning roller. The cleaning bin body has a holding portion in pneumatic communication with the cleaning bin entrance, and the air mover is operable to move air into the cleaning bin entrance.
    Type: Application
    Filed: August 13, 2009
    Publication date: February 18, 2010
    Applicant: iRobot Corporation
    Inventors: Patrick Alan Hussey, Robert Paul Roy, Rogelio Manfred Neumann, Selma Svendsen, Daniel N. Ozick, Christopher M. Casey, Deepak Ramesh Kapoor, Tony L. Campbell, Chikyung Won, Christopher John Morse, Scott Thomas Burnett