Patents by Inventor Chris McCollam

Chris McCollam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8062354
    Abstract: A tape-reinforced tubular vascular graft formed of sintered fluoropolymer(s), such as expanded, sintered PTFE. The graft includes a base graft and a reinforcing tape applied thereto. The tape may be spirally wrapped about the graft or spirally wrapped into a tube about a cylindrical mandrel and then applied to the exterior of the graft. Radial shrinkage of the combined base graft and tape, or of the reinforcing tape tube, renders the vascular graft subsequently radially enlargeable by more than 5%, without tearing or breaking of the reinforcement tape layer of the graft. Radially enlargeable grafts of the present invention may be combined with various types of stents or anchoring systems, to form endovascular graft devices which are transluminally insertable and implantable within the lumen of a host blood vessel.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: November 22, 2011
    Assignee: Edwards Lifesciences Corporation
    Inventors: Donald Shannon, John McIntyre, Chris Kuo, Chris McCollam, Robert Peterson
  • Publication number: 20070106300
    Abstract: A thin gauge surgical probe having a retractable reinforcing sleeve. The retractable sleeve helps to Protect the thin probe from bending during shipment and use.
    Type: Application
    Filed: November 8, 2005
    Publication date: May 10, 2007
    Inventors: Jack Auld, Michael Zica, Chris McCollam
  • Publication number: 20050096737
    Abstract: A tape-reinforced tubular vascular graft formed of sintered fluoropolymer(s), such as expanded, sintered PTFE. The graft includes a base graft and a reinforcing tape applied thereto. The tape may be spirally wrapped about the graft or spirally wrapped into a tube about a cylindrical mandrel and then applied to the exterior of the graft. Radial shrinkage of the combined base graft and tape, or of the reinforcing tape tube, renders the vascular graft subsequently radially enlargeable by more than 5%, without tearing or breaking of the reinforcement tape layer of the graft. Radially enlargeable grafts of the present invention may be combined with various types of stents or anchoring systems, to form endovascular graft devices which are transluminally insertable and implantable within the lumen of a host blood vessel.
    Type: Application
    Filed: December 10, 2004
    Publication date: May 5, 2005
    Inventors: Donald Shannon, John McIntyre, Chris Kuo, Chris McCollam, Robert Peterson
  • Patent number: 6863686
    Abstract: A tape-reinforced tubular vascular graft formed of sintered fluoropolymer(s), such as expanded, sintered PTFE. The graft includes a base graft and a reinforcing tape applied thereto. The tape may be spirally wrapped about the graft or spirally wrapped into a tube about a cylindrical mandrel and then applied to the exterior of The graft. Radial shrinkage of the combined base graft and tape, or of the reinforcing tape tube, renders the vascular graft subsequently radially enlargeable by more than 5%, without tearing or breaking of the reinforcement tape layer of the graft. Radially enlargeable grafts of the present invention may be combined with various types of stents or anchoring systems, to form endovascular graft devices which are transluminally insertable and implantable within the lumen of a host blood vessel.
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: March 8, 2005
    Inventors: Donald Shannon, John McIntyre, Chris Kuo, Chris McCollam, Robert Peterson
  • Publication number: 20010050132
    Abstract: A tape-reinforced tubular vascular graft formed of sintered fluoropolymer(s), such as expanded, sintered PTFE. The graft includes a base graft and a reinforcing tape applied thereto. The tape may be spirally wrapped about the graft or spirally wrapped into a tube about a cylindrical mandrel and then applied to the exterior of the graft. Radial shrinkage of the combined base graft and tape, or of the reinforcing tape tube, renders the vascular graft subsequently radially enlargeable by more than 5%, without tearing or breaking of the reinforcement tape layer of the graft. Radially enlargeable grafts of the present invention may be combined with various types of stents or anchoring systems, to form endovascular graft devices which are transluminally insertable and implantable within the lumen of a host blood vessel.
    Type: Application
    Filed: July 24, 2001
    Publication date: December 13, 2001
    Inventors: Donald Shannon, John Mclntyre, Chris Kuo, Chris McCollam, Robert Peterson
  • Patent number: 6267834
    Abstract: A method for improving the radial enlargeability and other properties of tape-reinforced tubular vascular graft formed of sintered fluoropolymer(s), such as expanded, sintered PTFE. Broadly, the method comprises the step of radially shrinking the reinforcement tape layer of the graft, or the entire tape-reinforced graft, after sintering thereof. Such radial shrinkage of the reinforcement tape layer, or of the entire graft, renders the graft subsequently radially enlargeable by more than 5%, without tearing or breaking of the reinforcement tape layer of the graft. Radially enlargeable grafts of the present invention may be combined with various types of stents or anchoring systems, to form endovascular graft devices which are transluminally insertable and implantable within the lumen of a host blood vessel.
    Type: Grant
    Filed: December 1, 1998
    Date of Patent: July 31, 2001
    Assignee: Edwards Lifesciences Corp.
    Inventors: Donald Shannon, John McIntyre, Chris Kuo, Chris McCollam, Robert Peterson
  • Patent number: 6099791
    Abstract: Porous fluoropolymer films, such as PTFE films, formed by a method including the steps of (a) forming a fluoropolymer (e.g., PTFE) paste, (b) extruding, calendaring, or otherwise processing the paste to form a film extrudate, (c) causing the film extrudate to be calendared in a first directional axis, (d) subsequently calendaring the film extrudate in a second directional axis which is different from the first directional axis, (e) subsequently calendaring the film extrudate in at least one additional directional axis which is different from said first and second directional axes, thereby forming a multiaxially calendared film extrudate, (f) drying the multiaxially calendared film extrudate, and (g) radially expanding the multiaxially calendared film extrudate to form a radially oriented fluoropolymer (e.g., PTFE) film. The porous fluoropolymer films formed by this method are multiaxially oriented and exhibit isotropic strength properties.
    Type: Grant
    Filed: March 8, 1996
    Date of Patent: August 8, 2000
    Assignee: Baxter International Inc.
    Inventors: Donald Shannon, John McIntyre, Chris Kuo, Chris McCollam, Robert Peterson
  • Patent number: 5976192
    Abstract: An externally supported, tape-reinforced tubular prosthetic graft and method of manufacturing therefore. The graft comprises a tubular base graft formed of expanded, sintered fluoropolymer material, a strip of reinforcement tape helically wrapped about the outer surface of the tubular base graft and attached thereto, and, an external support member helically wrapped around the outer surface of the reinforcement tape and attached thereto. The helical pitch of the reinforcement tape is different from the helical pitch of the external support member. Preferably, the helical pitch of the reinforcement tape is in a direction which is opposite the direction of the external support member.
    Type: Grant
    Filed: December 10, 1996
    Date of Patent: November 2, 1999
    Assignee: Baxter International Inc.
    Inventors: John McIntyre, Donald Shannon, Chris Kuo, Chris McCollam, Robert Peterson
  • Patent number: 5843173
    Abstract: A method for improving the radial enlargeability and other properties of tape-reinforced tubular vascular graft formed of sintered fluoropolymer(s), such as expanded, sintered PTFE. Broadly, the method comprises the step of radially shrinking the reinforcement tape layer of the graft, or the entire tape-reinforced graft, after sintering thereof. Such radial shrinkage of the reinforcement tape layer, or of the entire graft, renders the graft subsequently radially enlargeable by more than 5%, without tearing or breaking of the reinforcement tape layer of the graft. Radially enlargeable grafts of the present invention may be combined with various types of stents or anchoring systems, to form endovascular graft devices which are transluminally insertable and implantable within the lumen of a host blood vessel.
    Type: Grant
    Filed: April 18, 1997
    Date of Patent: December 1, 1998
    Assignee: Baxter International Inc.
    Inventors: Donald Shannon, John McIntyre, Chris Kuo, Chris McCollam, Robert Peterson
  • Patent number: 5641373
    Abstract: A method for improving the radial enlargeability and other properties of tape-reinforced tubular vascular graft formed of sintered fluoropolymer(s), such as expanded, sintered PTFE. Broadly, the method comprises the step of radially shrinking the reinforcement tape layer of the graft, or the entire tape-reinforced graft, after sintering thereof. Such radial shrinkage of the reinforcement tape layer, or of the entire graft, renders the graft subsequently radially enlargeable by more than 5%, without tearing or breaking of the reinforcement tape layer of the graft. Radially enlargeable grafts of the present invention may be combined with various types of stents or anchoring systems, to form endovascular graft devices which are transluminally insertable and implantable within the lumen of a host blood vessel.
    Type: Grant
    Filed: April 17, 1995
    Date of Patent: June 24, 1997
    Assignee: Baxter International Inc.
    Inventors: Donald Shannon, John McIntyre, Chris Kuo, Chris McCollam, Robert Peterson
  • Patent number: 5552100
    Abstract: A method for preparing thin fluoropolymer (PTFE) films, said method generally having the steps of: a) providing an unsintered fluoropolymer film; b) pre-sintering expansion of the film; c) sintering the expanded film with dimensional restraint to prevent shrinkage; and d) post-sintering stretching of the film to a final thickness preferably less than 0.002 inches. The post-sintering stretching of the film in step d may be accomplished in a single step, or may include a series of post-sintering stretching steps. Steps b and c of the method may be carried out bypassing the calendared film through a machine direction orienter device and, thereafter, step d of the method may be accomplished by subsequently repassing the sintered film through the machine direction orienter device, one or more additional times.
    Type: Grant
    Filed: May 2, 1995
    Date of Patent: September 3, 1996
    Assignee: Baxter International Inc.
    Inventors: Donald Shannon, Chris Kuo, Robert Peterson, Chris McCollam