Patents by Inventor Christian Geissler

Christian Geissler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10916484
    Abstract: An electronic device is disclosed. In one example, the electronic device includes a solder ball, a dielectric layer comprising an opening, and a redistribution layer (RDL) comprising an RDL pad connected with the solder ball. The RDL pad including at least one void, the void being disposed at least in partial in an area of the RDL pad laterally outside of the opening of the dielectric layer.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: February 9, 2021
    Assignee: Infineon Technologies AG
    Inventors: Robert Fehler, Francesca Arcioni, Christian Geissler, Walter Hartner, Gerhard Haubner, Thorsten Meyer, Martin Richard Niessner, Maciej Wojnowski
  • Publication number: 20210032097
    Abstract: A semiconductor device and a method of manufacturing the same are provided. The semiconductor device includes a substrate having a first surface and a second surface arranged opposite to the first surface; a stress-sensitive sensor disposed at the first surface of the substrate, where the stress-sensitive sensor is sensitive to mechanical stress; a stress-decoupling trench that has a vertical extension that extends from the first surface into the substrate, where the stress-decoupling trench vertically extends partially into the substrate towards the second surface although not completely to the second surface; and a plurality of particle filter trenches that vertically extend from the second surface into the substrate, wherein each of the plurality of particle filter trenches have a longitudinal extension that extends orthogonal to the vertical extension of the stress-decoupling trench.
    Type: Application
    Filed: October 21, 2020
    Publication date: February 4, 2021
    Applicant: Infineon Technologies AG
    Inventors: Florian BRANDL, Christian GEISSLER, Robert GRUENBERGER, Claus WAECHTER, Bernhard WINKLER
  • Patent number: 10899604
    Abstract: A semiconductor device and a method of manufacturing the same are provided. The semiconductor device includes a substrate having a first surface and a second surface arranged opposite to the first surface; a stress-sensitive sensor disposed at the first surface of the substrate, where the stress-sensitive sensor is sensitive to mechanical stress; a stress-decoupling trench that has a vertical extension that extends from the first surface into the substrate, where the stress-decoupling trench vertically extends partially into the substrate towards the second surface although not completely to the second surface; and a plurality of particle filter trenches that vertically extend from the second surface into the substrate, wherein each of the plurality of particle filter trenches have a longitudinal extension that extends orthogonal to the vertical extension of the stress-decoupling trench.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: January 26, 2021
    Inventors: Florian Brandl, Christian Geissler, Robert Gruenberger, Claus Waechter, Bernhard Winkler
  • Publication number: 20200384899
    Abstract: A fastening apparatus for a child seat on a vehicle seat in a motor vehicle has a fastening element for fastening a child seat holding belt, in particular a top-tether fastening element, and a deflecting element for the child's seat holding belt. The fastening element is arranged in a region of a seating position of the vehicle seat. The fastening element is fastened in front of a front side of a backrest of the vehicle seat.
    Type: Application
    Filed: October 29, 2018
    Publication date: December 10, 2020
    Inventors: Christian GEISSLER, Uemit KILINCSOY
  • Patent number: 10854590
    Abstract: An apparatus is described that includes a semiconductor die package. The semiconductor die package includes a semiconductor die package substrate having a top side and a bottom side. The semiconductor die package includes I/O balls on the bottom side of the semiconductor die package substrate. The I/O balls are to mount to a planar board. The semiconductor die package includes a first semiconductor die mounted on the bottom side of the semiconductor die package substrate. The first semiconductor die is vertically located between the bottom side of the semiconductor die package substrate and a second semiconductor die that is a part of the semiconductor die package.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: December 1, 2020
    Assignee: Intel IP Corporation
    Inventors: Sven Albers, Klaus Reingruber, Richard Patten, Georg Seidemann, Christian Geissler
  • Patent number: 10816742
    Abstract: Disclosed is a package comprising a substrate having a patterned surface with an optical contact area, an optical redistribution layer (oRDL) feature, and a build-up material extending over the patterned surface of the substrate and around portions of the oRDL features. In some embodiments, the package comprises a liner sheathing the oRDL features. In some embodiments, the oRDL feature extends through openings in an outer surface of the build-up material and forms posts extending outward from the outer surface. In some embodiments, the package comprises an electrical redistribution layer (eRDL) feature, at least some portion of which overlap at least some portion of the oRDL feature. In some embodiments, the package comprises an optical fiber coupled to the oRDL features.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: October 27, 2020
    Assignee: Intel IP Corporation
    Inventors: Georg Seidemann, Christian Geissler, Sven Albers, Thomas Wagner, Marc Dittes, Klaus Reingruber, Andreas Wolter, Richard Patten
  • Publication number: 20200331748
    Abstract: A semiconductor device and a method of manufacturing the same are provided. The semiconductor device includes a substrate having a first surface and a second surface arranged opposite to the first surface; a stress-sensitive sensor disposed at the first surface of the substrate, where the stress-sensitive sensor is sensitive to mechanical stress; a stress-decoupling trench that has a vertical extension that extends from the first surface into the substrate, where the stress-decoupling trench vertically extends partially into the substrate towards the second surface although not completely to the second surface; and a plurality of particle filter trenches that vertically extend from the second surface into the substrate, wherein each of the plurality of particle filter trenches have a longitudinal extension that extends orthogonal to the vertical extension of the stress-decoupling trench.
    Type: Application
    Filed: April 18, 2019
    Publication date: October 22, 2020
    Applicant: Infineon Technologies AG
    Inventors: Florian BRANDL, Christian GEISSLER, Robert GRUENBERGER, Claus WAECHTER, Bernhard WINKLER
  • Patent number: 10793429
    Abstract: A production method includes providing a semiconductor substrate with a wiring layer stack having cutouts on a first main surface region of the semiconductor substrate at which MEMS components are arranged in an exposed manner in the cutouts and projecting through contact elements are arranged at metallization regions of the wiring layer stack; applying a b-stage material layer cured in an intermediate stage on the wiring layer stack, such that the cutouts are covered by the b-stage material layer and the vertically projecting through contact elements are introduced into the b-stage material layer; curing the b-stage material layer to obtain a cured b-stage material layer; thinning the cured b-stage material layer; and applying a redistribution layer (RDL) structure on the thinned, cured b-stage material layer to obtain an electrical connection between the wiring layer stack and the RDL structure via the through contact elements.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: October 6, 2020
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Matthias Steiert, Christian Geissler, Karolina Zogal
  • Publication number: 20200273832
    Abstract: An apparatus is described that includes a redistribution layer and a semiconductor die on the redistribution layer. An electrically conductive layer resides over the semiconductor die. A compound mold resides over the electrically conductive layer.
    Type: Application
    Filed: May 11, 2020
    Publication date: August 27, 2020
    Inventors: Sven ALBERS, Klaus REINGRUBER, Georg SEIDEMANN, Christian GEISSLER, Richard PATTEN
  • Patent number: 10741486
    Abstract: Disclosed herein are electronic components having three-dimensional capacitors disposed in a metallization stack, as well as related methods and devices. In some embodiments, for example, an electronic component may include: a metallization stack and a capacitor disposed in the metallization stack wherein the capacitor includes a first conductive plate having a plurality of recesses, and a second conductive plate having a plurality of projections, wherein individual projections of the plurality of projections extend into corresponding individual recesses of the plurality of recesses without contacting the first conductive plate.
    Type: Grant
    Filed: March 6, 2016
    Date of Patent: August 11, 2020
    Assignee: Intel Corporation
    Inventors: Klaus Reingruber, Sven Albers, Christian Geissler
  • Publication number: 20200176436
    Abstract: An apparatus is described that includes a semiconductor die package. The semiconductor die package includes a semiconductor die package substrate having a top side and a bottom side. The semiconductor die package includes I/O balls on the bottom side of the semiconductor die package substrate. The I/O balls are to mount to a planar board. The semiconductor die package includes a first semiconductor die mounted on the bottom side of the semiconductor die package substrate. The first semiconductor die is vertically located between the bottom side of the semiconductor die package substrate and a second semiconductor die that is a part of the semiconductor die package.
    Type: Application
    Filed: December 23, 2015
    Publication date: June 4, 2020
    Inventors: Sven ALBERS, Klaus REINGRUBER, Richard PATTEN, Georg SEIDEMANN, Christian GEISSLER
  • Patent number: 10672731
    Abstract: An apparatus is described that includes a redistribution layer and a semiconductor die on the redistribution layer. An electrically conductive layer resides over the semiconductor die. A compound mold resides over the electrically conductive layer.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: June 2, 2020
    Assignee: Intel IP Corporation
    Inventors: Sven Albers, Klaus Reingruber, Georg Seidemann, Christian Geissler, Richard Patten
  • Publication number: 20200156933
    Abstract: A production method includes providing a semiconductor substrate with a wiring layer stack having cutouts on a first main surface region of the semiconductor substrate at which MEMS components are arranged in an exposed manner in the cutouts and projecting through contact elements are arranged at metallization regions of the wiring layer stack; applying a b-stage material layer cured in an intermediate stage on the wiring layer stack, such that the cutouts are covered by the b-stage material layer and the vertically projecting through contact elements are introduced into the b-stage material layer; curing the b-stage material layer to obtain a cured b-stage material layer; thinning the cured b-stage material layer; and applying a redistribution layer (RDL) structure on the thinned, cured b-stage material layer to obtain an electrical connection between the wiring layer stack and the RDL structure via the through contact elements.
    Type: Application
    Filed: January 21, 2020
    Publication date: May 21, 2020
    Inventors: Matthias Steiert, Christian Geissler, Karolina Zogal
  • Patent number: 10651102
    Abstract: An electronic assembly that includes an electronic component; and an interposer that includes a body having upper and lower surfaces and side walls extending between the upper and lower surfaces, the interposer further including conductive routings that are exposed on at least one of the side walls, wherein the electronic component is connected directly to the interposer. The conductive routings are exposed on each side wall and on the upper and lower surfaces. The electronic assembly may further includes a substrate having a cavity such that the interposer is within the cavity, wherein the cavity includes sidewalls and substrate includes conductive traces that are exposed from the sidewalls of the cavity, wherein the conductive traces that are exposed from the sidewalls of the cavity are electrically connected directly to the conductive routings that are exposed on at least one of the side walls of the interposer.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: May 12, 2020
    Assignee: Intel IP Corporation
    Inventors: Klaus Reingruber, Christian Geissler, Georg Seidemann, Sonja Koller
  • Patent number: 10584028
    Abstract: A production method includes providing a semiconductor substrate with a wiring layer stack having cutouts on a first main surface region of the semiconductor substrate at which MEMS components are arranged in an exposed manner in the cutouts and projecting through contact elements are arranged at metallization regions of the wiring layer stack; applying a b-stage material layer cured in an intermediate stage on the wiring layer stack, such that the cutouts are covered by the b-stage material layer and the vertically projecting through contact elements are introduced into the b-stage material layer; curing the b-stage material layer to obtain a cured b-stage material layer; thinning the cured b-stage material layer; and applying a redistribution layer (RDL) structure on the thinned, cured b-stage material layer to obtain an electrical connection between the wiring layer stack and the RDL structure via the through contact elements.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: March 10, 2020
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Matthias Steiert, Christian Geissler, Karolina Zogal
  • Patent number: 10549985
    Abstract: A semiconductor package includes a semiconductor die having a sensor structure disposed at a first side of the semiconductor die, and a first port extending through the semiconductor die from the first side to a second side of the semiconductor die opposite the first side, so as to provide a link to the outside environment. Corresponding methods of manufacture are also provided.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: February 4, 2020
    Assignee: Infineon Technologies AG
    Inventors: Dominic Maier, Matthias Steiert, Chau Fatt Chiang, Christian Geissler, Bernd Goller, Thomas Kilger, Johannes Lodermeyer, Franz-Xaver Muehlbauer, Chee Yang Ng, Beng Keh See, Claus Waechter
  • Publication number: 20200006174
    Abstract: A method comprises providing a least one semiconductor component, wherein each of the at least one semiconductor component comprises: a semiconductor chip, wherein the semiconductor chip comprises a first main surface and a second main surface opposite the first main surface, and a sacrificial layer arranged above the opposite second main surface of the semiconductor chip. The method further comprises encapsulating the at least one semiconductor component with an encapsulation material. The method further comprises removing the sacrificial material, wherein above each of the at least one semiconductor chip a cutout is formed in the encapsulation material. The method further comprises arranging at least one lid above the at least one cutout, wherein a closed cavity is formed by the at least one cutout and the at least one lid above each of the at least one semiconductor chip.
    Type: Application
    Filed: June 20, 2019
    Publication date: January 2, 2020
    Inventors: Christian GEISSLER, Walter Hartner, Claus Waechter, Maciej Wojnowski
  • Patent number: 10522454
    Abstract: A microelectronic package including a passive microelectronic device disposed within a package body, wherein the package body is the portion of the microelectronic package which provides support and/or rigidity to the microelectronic package. In a flip-chip type microelectronic package, the package body may comprise a microelectronic substrate to which an active microelectronic device is electrically attached. In an embedded device type microelectronic package, the package body may comprise the material in which the active microelectronic device is embedded.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: December 31, 2019
    Assignee: Intel Corporation
    Inventors: Thorsten Meyer, Gerald Ofner, Andreas Wolter, Georg Seidemann, Sven Albers, Christian Geissler
  • Patent number: 10522485
    Abstract: An electrical device includes a redistribution layer structure, an inter-diffusing material contact structure and a vertical electrically conductive structure located between the redistribution layer structure and the inter-diffusing material contact structure. The vertical electrically conductive structure includes a diffusion barrier structure located adjacently to the inter-diffusing material contact structure. Further, the diffusion barrier structure and the redistribution layer structure comprise different lateral dimensions.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: December 31, 2019
    Assignee: Intel IP Corporation
    Inventors: Christian Geissler, Sven Albers, Georg Seidemann, Andreas Wolter, Klaus Reingruber, Thomas Wagner, Marc Dittes
  • Patent number: 10490527
    Abstract: A method includes aligning a wire with a package body having a contact pad and moving the wire through the package body to form electrical contact with the contact pad.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: November 26, 2019
    Assignee: Intel IP Corporation
    Inventors: Christian Geissler, Sven Albers, Georg Seidemann, Andreas Wolter, Klaus Reingruber, Thomas Wagner, Marc Dittes