Patents by Inventor Christian J. Kastrup
Christian J. Kastrup has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240141357Abstract: The present disclosure provides a duplex or single-stranded siRNA molecule against plasminogen, the siRNA molecule containing modified or unmodified nucleotides and wherein at least one strand of the duplex or the single-stranded siRNA has a sequence that has at least 80% sequence identity to any one of SEQ NOs: 1 to 28. Further provided is a duplex or single-stranded siRNA molecule against plasminogen, the siRNA molecule containing modified or unmodified nucleotides and is between 25 and 35 nucleotides in length. The siRNA molecule may be formulated in a lipid nanoparticle as described herein.Type: ApplicationFiled: February 14, 2022Publication date: May 2, 2024Applicant: THE UNIVERSITY OF BRITISH COLUMBIAInventors: Christian J. Kastrup, Amy W. Strilchuk, Jerry Leung, Pieter R. Cullis, Madelaine Robertson
-
Patent number: 11446239Abstract: Biomedical devices for implantation with decreased pericapsular fibrotic overgrowth are disclosed. The device includes biocompatible materials and has specific characteristics that allow the device to elicit less of a fibrotic reaction after implantation than the same device lacking one or more of these characteristic that are present on the device. Biocompatible hydrogel capsules encapsulating mammalian cells having a diameter of greater than 1 mm, and optionally a cell free core, are disclosed which have reduced fibrotic overgrowth after implantation in a subject. Methods of treating a disease in a subject are also disclosed that involve administering a therapeutically effective amount of the disclosed encapsulated cells to the subject.Type: GrantFiled: September 17, 2020Date of Patent: September 20, 2022Assignees: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, THE CHILDREN'S MEDICAL CENTER CORPORATIONInventors: Minglin Ma, Daniel G. Anderson, Robert S. Langer, Omid Veiseh, Joshua Charles Doloff, Delai Chen, Christian J. Kastrup, Arturo Jose Vegas
-
Publication number: 20210069100Abstract: Biomedical devices for implantation with decreased pericapsular fibrotic overgrowth are disclosed. The device includes biocompatible materials and has specific characteristics that allow the device to elicit less of a fibrotic reaction after implantation than the same device lacking one or more of these characteristic that are present on the device. Biocompatible hydrogel capsules encapsulating mammalian cells having a diameter of greater than 1 mm, and optionally a cell free core, are disclosed which have reduced fibrotic overgrowth after implantation in a subject. Methods of treating a disease in a subject are also disclosed that involve administering a therapeutically effective amount of the disclosed encapsulated cells to the subject.Type: ApplicationFiled: September 17, 2020Publication date: March 11, 2021Inventors: Minglin Ma, Daniel G. Anderson, Robert S. Langer, Omid Veiseh, Joshua Charles Doloff, Delai Chen, Christian J. Kastrup, Arturo Jose Vegas
-
Patent number: 10835486Abstract: Biocompatible hydrogel capsules encapsulating mammalian cells having a diameter of greater than 1 mm, and optionally a cell free core, are disclosed which have reduced fibrotic overgrowth after implantation in a subject. Methods of treating a disease in a subject are also disclosed that involve administering a therapeutically effective amount of the disclosed encapsulated cells to the subject.Type: GrantFiled: December 15, 2016Date of Patent: November 17, 2020Assignees: Massachusetts Institute of Technology, The Children's Medical Center CorporationInventors: Minglin Ma, Daniel G. Anderson, Robert S. Langer, Omid Veiseh, Arturo Jose Vegas, Joshua Charles Doloff, Delai Chen, Christian J. Kastrup
-
Patent number: 10786446Abstract: Biomedical devices for implantation with decreased pericapsular fibrotic overgrowth are disclosed. The device includes biocompatible materials and has specific characteristics that allow the device to elicit less of a fibrotic reaction after implantation than the same device lacking one or more of these characteristic that are present on the device. Biocompatible hydrogel capsules encapsulating mammalian cells having a diameter of greater than 1 mm, and optionally a cell free core, are disclosed which have reduced fibrotic overgrowth after implantation in a subject. Methods of treating a disease in a subject are also disclosed that involve administering a therapeutically effective amount of the disclosed encapsulated cells to the subject.Type: GrantFiled: November 26, 2018Date of Patent: September 29, 2020Assignees: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, THE CHILDREN'S MEDICAL CENTER CORPORATIONInventors: Minglin Ma, Daniel G. Anderson, Robert S. Langer, Omid Veiseh, Joshua Charles Doloff, Delai Chen, Christian J. Kastrup, Arturo Jose Vegas
-
Publication number: 20190091139Abstract: Biomedical devices for implantation with decreased pericapsular fibrotic overgrowth are disclosed. The device includes biocompatible materials and has specific characteristics that allow the device to elicit less of a fibrotic reaction after implantation than the same device lacking one or more of these characteristic that are present on the device. Biocompatible hydrogel capsules encapsulating mammalian cells having a diameter of greater than 1 mm, and optionally a cell free core, are disclosed which have reduced fibrotic overgrowth after implantation in a subject. Methods of treating a disease in a subject are also disclosed that involve administering a therapeutically effective amount of the disclosed encapsulated cells to the subject.Type: ApplicationFiled: November 26, 2018Publication date: March 28, 2019Inventors: Minglin Ma, Daniel G. Anderson, Robert S. Langer, Omid Veiseh, Joshua Charles Doloff, Delai Chen, Christian J. Kastrup, Arturo Jose Vegas
-
Patent number: 10172791Abstract: Biomedical devices for implantation with decreased pericapsular fibrotic overgrowth are disclosed. The device includes biocompatible materials and has specific characteristics that allow the device to elicit less of a fibrotic reaction after implantation than the same device lacking one or more of these characteristic that are present on the device. Biocompatible hydrogel capsules encapsulating mammalian cells having a diameter of greater than 1 mm, and optionally a cell free core, are disclosed which have reduced fibrotic overgrowth after implantation in a subject. Methods of treating a disease in a subject are also disclosed that involve administering a therapeutically effective amount of the disclosed encapsulated cells to the subject.Type: GrantFiled: March 14, 2014Date of Patent: January 8, 2019Assignee: Massachusetts Institute of TechnologyInventors: Minglin Ma, Daniel G. Anderson, Robert S. Langer, Omid Veiseh, Joshua Charles Doloff, Delai Chen, Christian J. Kastrup, Arturo Jose Vegas
-
Publication number: 20180353643Abstract: Biomedical devices for implantation with decreased pericapsular fibrotic overgrowth are disclosed. The device includes biocompatible materials and has specific characteristics that allow the device to elicit less of a fibrotic reaction after implantation than the same device lacking one or more of these characteristic that are present on the device. Biocompatible hydrogel capsules encapsulating mammalian cells having a diameter of greater than 1 mm, and optionally a cell free core, are disclosed which have reduced fibrotic overgrowth after implantation in a subject. Methods of treating a disease in a subject are also disclosed that involve administering a therapeutically effective amount of the disclosed encapsulated cells to the subject.Type: ApplicationFiled: May 17, 2016Publication date: December 13, 2018Inventors: Minglin Ma, Daniel G. Anderson, Robert S. Langer, Omid Veiseh, Arturo Jose Vegas, Joshua Charles Doloff, Delai Chen, Christian J. Kastrup
-
Publication number: 20170095514Abstract: Biocompatible hydrogel capsules encapsulating mammalian cells having a diameter of greater than 1 mm, and optionally a cell free core, are disclosed which have reduced fibrotic overgrowth after implantation in a subject. Methods of treating a disease in a subject are also disclosed that involve administering a therapeutically effective amount of the disclosed encapsulated cells to the subject.Type: ApplicationFiled: December 15, 2016Publication date: April 6, 2017Inventors: Minglin Ma, Daniel G. Anderson, Robert S. Langer, Omid Veiseh, Arturo Jose Vegas, Joshua Charles Doloff, Delai Chen, Christian J. Kastrup
-
Patent number: 9555007Abstract: Biocompatible hydrogel capsules encapsulating mammalian cells having a diameter of greater than 1 mm, and optionally a cell free core, are disclosed which have reduced fibrotic overgrowth after implantation in a subject. Methods of treating a disease in a subject are also disclosed that involve administering a therapeutically effective amount of the disclosed encapsulated cells to the subject.Type: GrantFiled: March 14, 2013Date of Patent: January 31, 2017Assignees: Massachusetts Institute of Technology, The Children's Medical Center CorporationInventors: Minglin Ma, Daniel G. Anderson, Robert S. Langer, Omid Veiseh, Arturo Jose Vegas, Joshua Charles Doloff, Delai Chen, Christian J. Kastrup
-
Publication number: 20160030359Abstract: Biomedical devices for implantation with decreased pericapsular fibrotic overgrowth are disclosed. The device includes biocompatible materials and has specific characteristics that allow the device to elicit less of a fibrotic reaction after implantation than the same device lacking one or more of these characteristic that are present on the device. Biocompatible hydrogel capsules encapsulating mammalian cells having a diameter of greater than 1 mm, and optionally a cell free core, are disclosed which have reduced fibrotic overgrowth after implantation in a subject. Methods of treating a disease in a subject are also disclosed that involve administering a therapeutically effective amount of the disclosed encapsulated cells to the subject.Type: ApplicationFiled: March 14, 2014Publication date: February 4, 2016Applicant: Massachusetts Institute of TechnologyInventors: Minglin Ma, Daniel G. Anderson, Robert S. Langer, Omid Veiseh, Joshua Charles Doloff, Delai Chen, Christian J. Kastrup, Arturo Jose Vegas
-
Publication number: 20100273259Abstract: The present disclosure provides a device and a cell culture system comprising a substrate that generates significant chemical ion signatures adapted for culturing stem cells. This disclosure further provides unique surface properties, such as surface wettability, along with defined polymer microspot environments in an array, for effectively supporting the propagation and differentiation of human pluripotent stem cells in vitro. Methods of culturing, maintenance, differentiating stem cells as well as reprogramming somatic cells into stem cells using the device and the cell culture system with the suitable substrates, along with suitable culture media, are also provided.Type: ApplicationFiled: April 22, 2010Publication date: October 28, 2010Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGYInventors: Krishanu Saha, Ying Mei, Said R. Bogatyrev, Daniel G. Anderson, Rudolf Jaenisch, Robert S. Langer, Morgan Alexander, Martyn Davies, Jing Yang, Christian J. Kastrup, Andrew Urquhart
-
Publication number: 20090104637Abstract: This invention provides an apparatus for assaying clotting activity. The apparatus includes an inlet for a blood fluid and two or more patches of material in the vessel. The material is capable of initiating a clotting pathway in a blood fluid. This invention also provides an apparatus for measuring clot propagation, which includes a region with material capable of initiating a clotting pathway, and a region where the clot propagation is monitored. Also provided are methods for assaying clotting activity, assaying the integrity of a blood clotting pathway, assaying the effect of a substance on the integrity of a blood clotting pathway, monitoring clot propagation, and preventing clot propagation from one vessel to another.Type: ApplicationFiled: January 31, 2007Publication date: April 23, 2009Inventors: Rustem F. Ismagilov, Christian J. Kastrup, Matthew K. Runyon, Helen Song, Feng Shen