Patents by Inventor Christian Marin-Muller
Christian Marin-Muller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250092402Abstract: A novel network of tumorigenic prognostic factors is identified that plays a critical role in advanced pancreatic cancer (PC) pathogenesis. This interactome is interconnected through a central tumor suppressive microRNA, miR-198, which is able to both directly and indirectly modulate expression of the various members of this network to alter the molecular makeup of pancreatic tumors, with important clinical implications. When this tumor signature network is intact, miR-198 expression is reduced and patient survival is dismal; patients with higher miR-198 present an altered tumor signature network, better prognosis and increased survival. Further, according to the present disclosure, MiR-198 replacement reverses tumorigenicity in vitro and in vivo.Type: ApplicationFiled: September 30, 2024Publication date: March 20, 2025Applicant: Baylor College of MedicineInventors: Qizhi Yao, Christian Marin-Muller, Changyi Chen
-
Patent number: 12134769Abstract: A novel network of tumorigenic prognostic factors is identified that plays a critical role in advanced pancreatic cancer (PC) pathogenesis. This interactome is interconnected through a central tumor suppressive microRNA, miR-198, which is able to both directly and indirectly modulate expression of the various members of this network to alter the molecular makeup of pancreatic tumors, with important clinical implications. When this tumor signature network is intact, miR-198 expression is reduced and patient survival is dismal; patients with higher miR-198 present an altered tumor signature network, better prognosis and increased survival. Further, according to the present disclosure, MiR-198 replacement reverses tumorigenicity in vitro and in vivo.Type: GrantFiled: April 21, 2021Date of Patent: November 5, 2024Assignee: Baylor College of MedicineInventors: Qizhi Yao, Christian Marin-Muller, Changyi Chen
-
Publication number: 20220177889Abstract: A novel network of tumorigenic prognostic factors is identified that plays a critical role in advanced pancreatic cancer (PC) pathogenesis. This interactome is interconnected through a central tumor suppressive microRNA, miR-198, which is able to both directly and indirectly modulate expression of the various members of this network to alter the molecular makeup of pancreatic tumors, with important clinical implications. When this tumor signature network is intact, miR-198 expression is reduced and patient survival is dismal; patients with higher miR-198 present an altered tumor signature network, better prognosis and increased survival. Further, according to the present disclosure, MiR-198 replacement reverses tumorigenicity in vitro and in vivo.Type: ApplicationFiled: April 21, 2021Publication date: June 9, 2022Inventors: Qizhi Yao, Christian Marin-Muller, Changyi Chen
-
Patent number: 11008573Abstract: A novel network of tumorigenic prognostic factors is identified that plays a critical role in advanced pancreatic cancer (PC) pathogenesis. This interactome is interconnected through a central tumor suppressive microRNA, miR-198, which is able to both directly and indirectly modulate expression of the various members of this network to alter the molecular makeup of pancreatic tumors, with important clinical implications. When this tumor signature network is intact, miR-198 expression is reduced and patient survival is dismal; patients with higher miR-198 present an altered tumor signature network, better prognosis and increased survival. Further, according to the present disclosure, MiR-198 replacement reverses tumorigenicity in vitro and in vivo.Type: GrantFiled: March 12, 2019Date of Patent: May 18, 2021Assignee: Baylor College of MedicineInventors: Qizhi Yao, Christian Marin-Muller, Changyi Chen
-
Publication number: 20190194663Abstract: A novel network of tumorigenic prognostic factors is identified that plays a critical role in advanced pancreatic cancer (PC) pathogenesis. This interactome is interconnected through a central tumor suppressive microRNA, miR-198, which is able to both directly and indirectly modulate expression of the various members of this network to alter the molecular makeup of pancreatic tumors, with important clinical implications. When this tumor signature network is intact, miR-198 expression is reduced and patient survival is dismal; patients with higher miR-198 present an altered tumor signature network, better prognosis and increased survival. Further, according to the present disclosure, MiR-198 replacement reverses tumorigenicity in vitro and in vivo.Type: ApplicationFiled: March 12, 2019Publication date: June 27, 2019Inventors: Qizhi Yao, Christian Marin-Muller, Changyi Chen
-
Publication number: 20180346914Abstract: A novel network of tumorigenic prognostic factors is identified that plays a critical role in advanced pancreatic cancer (PC) pathogenesis. This interactome is interconnected through a central tumor suppressive microRNA, miR-198, which is able to both directly and indirectly modulate expression of the various members of this network to alter the molecular makeup of pancreatic tumors, with important clinical implications. When this tumor signature network is intact, miR-198 expression is reduced and patient survival is dismal; patients with higher miR-198 present an altered tumor signature network, better prognosis and increased survival. Further, according to the present disclosure, MiR-198 replacement reverses tumorigenicity in vitro and in vivo.Type: ApplicationFiled: April 17, 2018Publication date: December 6, 2018Inventors: Qizhi Yao, Christian Marin-Muller, Changyi Chen
-
Publication number: 20170081666Abstract: A novel network of tumorigenic prognostic factors is identified that plays a critical role in advanced pancreatic cancer (PC) pathogenesis. This interactome is interconnected through a central tumor suppressive microRNA, miR-198, which is able to both directly and indirectly modulate expression of the various members of this network to alter the molecular makeup of pancreatic tumors, with important clinical implications. When this tumor signature network is intact, miR-198 expression is reduced and patient survival is dismal; patients with higher miR-198 present an altered tumor signature network, better prognosis and increased survival. Further, according to the present disclosure, MiR-198 replacement reverses tumorigenicity in vitro and in vivo.Type: ApplicationFiled: December 8, 2016Publication date: March 23, 2017Inventors: Qizhi Yao, Christian Marin-Muller, Changyi Chen
-
Patent number: 9546365Abstract: A novel network of tumorigenic prognostic factors is identified that plays a critical role in advanced pancreatic cancer (PC) pathogenesis. This interactome is interconnected through a central tumor suppressive microRNA, miR-198, which is able to both directly and indirectly modulate expression of the various members of this network to alter the molecular makeup of pancreatic tumors, with important clinical implications. When this tumor signature network is intact, miR-198 expression is reduced and patient survival is dismal; patients with higher miR-198 present an altered tumor signature network, better prognosis and increased survival. Further, according to the present disclosure, MiR-198 replacement reverses tumorigenicity in vitro and in vivo.Type: GrantFiled: February 5, 2015Date of Patent: January 17, 2017Assignee: Baylor College of MedicineInventors: Qizhi Yao, Christian Marin-Muller, Changyi Chen
-
Publication number: 20150211009Abstract: A novel network of tumorigenic prognostic factors is identified that plays a critical role in advanced pancreatic cancer (PC) pathogenesis. This interactome is interconnected through a central tumor suppressive microRNA, miR-198, which is able to both directly and indirectly modulate expression of the various members of this network to alter the molecular makeup of pancreatic tumors, with important clinical implications. When this tumor signature network is intact, miR-198 expression is reduced and patient survival is dismal; patients with higher miR-198 present an altered tumor signature network, better prognosis and increased survival. Further, according to the present disclosure, MiR-198 replacement reverses tumorigenicity in vitro and in vivo.Type: ApplicationFiled: February 5, 2015Publication date: July 30, 2015Inventors: Qizhi Yao, Christian Marin-Muller, Changyi Chen
-
Patent number: 8987224Abstract: A novel network of tumorigenic prognostic factors is identified that plays a critical role in advanced pancreatic cancer (PC) pathogenesis. This interactome is interconnected through a central tumor suppressive microRNA, miR-198, which is able to both directly and indirectly modulate expression of the various members of this network to alter the molecular makeup of pancreatic tumors. When this tumor signature network is intact, miR-198 expression is reduced and patient survival is dismal; patients with higher miR-198 present an altered tumor signature network, better prognosis and increased survival. Further, MiR-198 replacement reverses tumorigenicity in vitro and in vivo. embodiment of the disclosure is a method of treating cancer in an individual, comprising the step of increasing the level of active microRNA-198 molecules in the pancreatic cancer tumor cells of the individual by an amount sufficient to cause an improvement in the pancreatic cancer in the individual.Type: GrantFiled: August 6, 2012Date of Patent: March 24, 2015Assignee: Baylor College of MedicineInventors: Qizhi Yao, Christian Marin-Muller, Changyi Chen
-
Publication number: 20130121912Abstract: A novel network of tumorigenic prognostic factors is identified that plays a critical role in advanced pancreatic cancer (PC) pathogenesis. This interactome is interconnected through a central tumor suppressive microRNA, miR-198, which is able to both directly and indirectly modulate expression of the various members of this network to alter the molecular makeup of pancreatic tumors. When this tumor signature network is intact, miR-198 expression is reduced and patient survival is dismal; patients with higher miR-198 present an altered tumor signature network, better prognosis and increased survival. Further, MiR-198 replacement reverses tumorigenicity in vitro and in vivo. embodiment of the disclosure is a method of treating cancer in an individual, comprising the step of increasing the level of active microRNA-198 molecules in the pancreatic cancer tumor cells of the individual by an amount sufficient to cause an improvement in the pancreatic cancer in the individual.Type: ApplicationFiled: August 6, 2012Publication date: May 16, 2013Applicant: BAYLOR COLLEGE OF MEDICINEInventors: Qizhi Yao, Christian Marin-Muller, Changyi Chen