Patents by Inventor Christian Seassal

Christian Seassal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220146402
    Abstract: A particle detector includes at least one resonant cavity partially formed at least by a first reflector, a second reflector disposed at a distance from the first reflector and a channel located between the first and second reflectors, the channel being intended to receive at least one fluid comprising particles and to receive at least one light radiation; and at least one detection system having at least one photodetector. The particle detector is configured so that a portion of the light radiation present in the channel escapes from the cavity throughout the second reflector and reaches the detection system, thereby enabling the at least one photodetector to detect leakage of the cavity. The second reflector is a photonic crystal membranes PCM based reflector.
    Type: Application
    Filed: December 23, 2019
    Publication date: May 12, 2022
    Applicants: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, CPE LYON, ECOLE CENTRALE DE LYON, INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON, UNIVERSITE CLAUDE BERNARD LYON 1
    Inventors: Gabriel JOBERT, Salim BOUTAMI, Maryse FOURNIER, Christian SEASSAL
  • Publication number: 20220091018
    Abstract: An optical particle detector including at least one channel intended to receive a fluid carrying at least one particle, and across which light rays are intended to pass such that the light rays are partially scattered by the at least one particle, a plurality of photodetectors capable of receiving said scattered light rays, wherein the detector includes at least one optical waveguide configured to collect, at least at one entrance of the waveguide, light rays that were not scattered by the at least one particle and having crossed the channel, and to reinject the unscattered light rays into the channel through at least one exit of the waveguide.
    Type: Application
    Filed: September 21, 2021
    Publication date: March 24, 2022
    Applicants: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, CPE LYON FORMATION CONTINUE ET RECHERCHE, ECOLE CENTRALE DE LYON, INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON, UNIVERSITE CLAUDE BERNARD LYON 1
    Inventors: Salim BOUTAMI, Maryse FOURNIER, Gabriel JOBERT, Christian SEASSAL, Cécile JAMOIS
  • Patent number: 8885247
    Abstract: The present invention relates to a device for controlling optical frequency (F1, F2) about a central working frequency (F0). This device comprises a vertical cavity (2) formed of two parallel and partially reflecting walls (3a, 3b), and a membrane (6) comprising at least one layer (7a, 7b) structured in the form of a photonic crystal. In this device, the two walls (3a, 3b) are separated by an optical distance substantially proportional to half the wavelength (?0) corresponding to the central working frequency (F0). The membrane (6) is integrated between the walls (3a, 3b) of the cavity (2) and devised in such a way as to exhibit a mode of optical resonance at this central working wavelength (?0). At least one layer of the device is made up of at least one portion of a material exhibiting nonlinear optical properties.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: November 11, 2014
    Assignee: Centre National de la Recherche Scientific—CNRS
    Inventors: Xavier Letartre, Pierre Viktorovitch, Jean-Louis Leclercq, Christian Seassal
  • Patent number: 8483527
    Abstract: A device for collecting light emitted by a laser source, including an optical wave guide arranged so as to collect a light signal emitted by the laser source, by coupling. The wave guide includes a loop coupled to a laser source in two coupling zones making it possible to recover optical modes circulating along the direction opposite to the required direction for the signal output from the device.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: July 9, 2013
    Assignees: Commissariat à l'énergie atomique et aux énergies alternatives, Centre National de la Recherche Scientifique
    Inventors: Fabien Mandorlo, Jean-Marc Fedeli, Pedro Rojo-Romeo, Xavier Letartre, Christian Seassal
  • Publication number: 20120170109
    Abstract: The present invention relates to a device for controlling optical frequency (F1, F2) about a central working frequency (F0). This device comprises a vertical cavity (2) formed of two parallel and partially reflecting walls (3a, 3b), and a membrane (6) comprising at least one layer (7a, 7b) structured in the form of a photonic crystal. In this device, the two walls (3a, 3b) are separated by an optical distance substantially proportional to half the wavelength (?0) corresponding to the central working frequency (F0). The membrane (6) is integrated between the walls (3a, 3b) of the cavity (2) and devised in such a way as to exhibit a mode of optical resonance at this central working wavelength (?0). At least one layer of the device is made up of at least one portion of a material exhibiting nonlinear optical properties.
    Type: Application
    Filed: July 26, 2010
    Publication date: July 5, 2012
    Applicant: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE-CNRS
    Inventors: Xavier Letartre, Pierre Viktorovitch, Jean-Louis Leclercq, Christian Seassal
  • Publication number: 20110243501
    Abstract: A device for collecting light emitted by a laser source, including an optical wave guide arranged so as to collect a light signal emitted by the laser source, by coupling. The wave guide includes a loop coupled to a laser source in two coupling zones making it possible to recover optical modes circulating along the direction opposite to the required direction for the signal output from the device.
    Type: Application
    Filed: July 9, 2009
    Publication date: October 6, 2011
    Applicants: Comm A L'ener Atom Et Aux Energies Alt, Ecole Centrale De Lyon, Centre National De La Recherche Scientifique
    Inventors: Fabien Mandorlo, Jean-Marc Fedeli, Pedro Rojo-Romeo, Xavier Letartre, Christian Seassal
  • Patent number: 6943384
    Abstract: The invention concerns an optoelectronic device comprising at alteration of at least three semiconductor layers with selected shape, and two air layers. The semiconductor layers having N-type or P-type doping which may differ or not from one layer to the next layer, are separated by spacers whereof the doping is non-intentional (I-type) or intentional (N-type or P-type) to define a PINIP or NIPIN structure with air cavities, and are adapted to be set at selected respective electric potentials. The respective thicknesses and compositions of the layers and the spacers are selected so that the structure has at least an optical transfer function adapted to light to be treated and adjustable in accordance with the selected potentials applied to the semiconductor layers.
    Type: Grant
    Filed: September 3, 2002
    Date of Patent: September 13, 2005
    Assignees: Centre National de la Recherche Scientifique, Ecole Centrale de Lyon
    Inventors: Pierre Viktorovitch, Jean-Louis Leclercq, Christian Seassal, Alain Spisser, Michel Garrigues
  • Publication number: 20030107034
    Abstract: The invention concerns an optoelectronic device comprising at alteration of at least three semiconductor layers with selected shape, and two air layers. The semiconductor layers having N-type or P-type doping which may differ or not from one layer to the next layer, are separated by spacers whereof the doping is non-intentional (I-type) or intentional (N-type or P-type) to define a PINIP or NIPIN structure with air cavities, and are adapted to be set at selected respective electric potentials. The respective thicknesses and compositions of the layers and the spacers are selected so that the structure has at least an optical transfer function adapted to light to be treated and adjustable in accordance with the selected potentials applied to the semiconductor layers.
    Type: Application
    Filed: September 3, 2002
    Publication date: June 12, 2003
    Applicants: Centre National De La Recherche Scientifique, Ecole Centrale De Lyon
    Inventors: Pierre Viktorovitch, Jean-Louis Leclercq, Christian Seassal, Alain Spisser, Michel Garrigues