Patents by Inventor Christian Wolters

Christian Wolters has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220054378
    Abstract: Suggested is a cosmetic or pharmaceutical or detergent composition comprising 1,2 pentanediol, wherein said 1,2-pentanediol is obtained from a process comprising the following steps: (a) providing at least one starting material selected from furfuryl alcohol and furfural; (b) reacting at least one of said starting materials with hydrogen in the presence of a heterogeneous catalyst to form 1,2-pentanediol, wherein said heterogeneous catalyst comprises: one or more metals selected from the group consisting of platinum, rhodium, ruthenium, nickel, palladium and iridium in metallic form and/or one or more compounds of metals selected from the group consisting of platinum, rhodium, ruthenium, nickel, palladium and iridium; and one or more support materials selected from the group consisting of activated carbon, aluminum oxide, silicon dioxide, and silicon carbide; and (c) removing the 1,2-pentanediol thus obtained from the reaction mixture.
    Type: Application
    Filed: October 30, 2018
    Publication date: February 24, 2022
    Inventors: Ravikumar PILLAI, Jürgen SIEWERT, Yonahha SANDER, Torsten STEPHAN, Christian WOLTER, Oliver LENZ
  • Publication number: 20210010949
    Abstract: Methods and systems for detecting and classifying defects based on the phase of dark field scattering from a sample are described herein. In some embodiments, throughput is increased by detecting and classifying defects with the same optical system. In one aspect, a defect is classified based on the measured relative phase of scattered light collected from at least two spatially distinct locations in the collection pupil. The phase difference, if any, between the light transmitted through any two spatially distinct locations at the pupil plane is determined from the positions of the interference fringes in the imaging plane. The measured phase difference is indicative of the material composition of the measured sample. In another aspect, an inspection system includes a programmable pupil aperture device configured to sample the pupil at different, programmable locations in the collection pupil.
    Type: Application
    Filed: June 26, 2020
    Publication date: January 14, 2021
    Inventors: Zhiwei Xu, Kurt Haller, J.K. Leong, Christian Wolters
  • Patent number: 10589241
    Abstract: The invention relates to a method for the storage of cooling agents without caking, characterized in that the latter are filled into standard packages having a maximum capacity of 25 l, with the proviso that (a) the packages are filled to 50% maximum, and (b) the amount filled into the package does not exceed 10 kg.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: March 17, 2020
    Assignee: Symrise AG
    Inventors: Oliver Lenz, Michael Michler, Jörg Niekerken, Jürgen Siewart, Christian Wolter
  • Patent number: 10328405
    Abstract: Suggested is a process for the production of solid cooling agents, wherein a pre-scraped melt, i.e., a melt of menthol compounds with added seed crystals is applied to a pre-cooled area by even deposition of drops.
    Type: Grant
    Filed: July 26, 2015
    Date of Patent: June 25, 2019
    Assignee: Symrise AG
    Inventors: Jürgen Siewert, Michael Michler, Jörg Niekerken, Oliver Lenz, Christian Wolter
  • Patent number: 10324045
    Abstract: Methods and systems for reducing illumination intensity while scanning over large particles are presented herein. A surface inspection system determines the presence of a large particle in the inspection path of a primary measurement spot using a separate leading measurement spot. The inspection system reduces the incident illumination power while the large particle is within the primary measurement spot. The primary measurement spot and the leading measurement spot are separately imaged by a common imaging collection objective onto one or more detectors. The imaging based collection design spatially separates the image of the leading measurement spot from the image of the primary measurement spot at one or more wafer image planes. Light detected from the leading measurement spot is analyzed to determine a reduced power time interval when the optical power of the primary illumination beam and the leading illumination beam are reduced.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: June 18, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Steve (Yifeng) Cui, Chunsheng Huang, Chunhai Wang, Christian Wolters, Bret Whiteside, Anatoly G. Romanovsky, Chuanyong Huang, Donald Warren Pettibone
  • Patent number: 10241217
    Abstract: An inspection system with radiation-induced false count mitigation includes a radiation count controller coupled to one or more radiation sensors positioned proximate to an illumination sensor oriented to detect illumination from a sample. The radiation count controller may identify a set of radiation detection events based on radiation signals received from the radiation sensors during operation of the illumination sensor. The inspection system may further include an inspection controller to identify a set of illumination detection events based on an illumination signal, identify one or more features on the sample based on the set of illumination detection events, receive the set of radiation detection events from the radiation count controller, compare the set of radiation detection events to the set of illumination detection events to identify a set of coincidence events, and refine the one or more identified features on the sample based on the set of coincidence events.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: March 26, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Ximan Jiang, Anatoly Romanovsky, Christian Wolters, Stephen Biellak, Mous Tatarkhanov
  • Patent number: 10215712
    Abstract: A method and apparatus for producing high frequency dynamically focused oblique laser illumination for a spinning wafer inspection system. The focus is changed by changing the beam direction incidence angle so as to bring focal spot onto the wafer surface. Disclosed herein is a system and method for automatic beam shaping (i.e., spot size) and steering (i.e., position) for a spinning wafer inspection system, combined into a single module. Also disclosed is a method and system for measuring the beam position/size/shape and angle with sufficient resolution to make corrections using feedback from the monitor.
    Type: Grant
    Filed: November 30, 2014
    Date of Patent: February 26, 2019
    Inventors: Christian Wolters, Bret Whiteside, Anatoly Romanovsky
  • Patent number: 10088345
    Abstract: The present disclosure is directed to a method for designing an aperture in a mask for inspecting a wafer. The method includes the steps of scanning a collection plane of the wafer at a plurality of points and collecting data for at least a part of the wafer. The method also includes the step of mapping the data. A further step of the method includes configuring the aperture based on the mapped data.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: October 2, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Chuanyong Huang, Raymond Chu, Gordana Neskovic, Dieter Wilk, Christian Wolters, Tim Mahatdejkul
  • Publication number: 20180045837
    Abstract: An inspection system with radiation-induced false count mitigation includes a radiation count controller coupled to one or more radiation sensors positioned proximate to an illumination sensor oriented to detect illumination from a sample. The radiation count controller may identify a set of radiation detection events based on radiation signals received from the radiation sensors during operation of the illumination sensor. The inspection system may further include an inspection controller to identify a set of illumination detection events based on an illumination signal, identify one or more features on the sample based on the set of illumination detection events, receive the set of radiation detection events from the radiation count controller, compare the set of radiation detection events to the set of illumination detection events to identify a set of coincidence events, and refine the one or more identified features on the sample based on the set of coincidence events.
    Type: Application
    Filed: October 26, 2017
    Publication date: February 15, 2018
    Inventors: Ximan Jiang, Anatoly Romanovsky, Christian Wolters, Stephen Biellak, Mous Tatarkhanov
  • Patent number: 9891177
    Abstract: A wafer scanning system includes imaging collection optics to reduce the effective spot size. Smaller spot size decreases the number of photons scattered by the surface proportionally to the area of the spot. Air scatter is also reduced. TDI is used to produce a wafer image based on a plurality of image signals integrated over the direction of linear motion of the wafer. An illumination system floods the wafer with light, and the task of creating the spot is allocated to the imaging collection optics.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: February 13, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Jijen Vazhaeparambil, Guoheng Zhao, Daniel Kavaldjiev, Anatoly Romanovsky, Ivan Maleev, Christian Wolters, Stephen Biellak, Bret Whiteside, Donald Pettibone, Yung-Ho Alex Chuang, David W. Shortt
  • Publication number: 20180038803
    Abstract: Methods and systems for reducing illumination intensity while scanning over large particles are presented herein. A surface inspection system determines the presence of a large particle in the inspection path of a primary measurement spot using a separate leading measurement spot. The inspection system reduces the incident illumination power while the large particle is within the primary measurement spot. The primary measurement spot and the leading measurement spot are separately imaged by a common imaging collection objective onto one or more detectors. The imaging based collection design spatially separates the image of the leading measurement spot from the image of the primary measurement spot at one or more wafer image planes. Light detected from the leading measurement spot is analyzed to determine a reduced power time interval when the optical power of the primary illumination beam and the leading illumination beam are reduced.
    Type: Application
    Filed: August 5, 2016
    Publication date: February 8, 2018
    Inventors: Steve (Yifeng) Cui, Chunsheng Huang, Chunhai Wang, Christian Wolters, Bret Whiteside, Anatoly G. Romanovsky, Chuanyong Huang, Donald Warren Pettibone
  • Publication number: 20170368521
    Abstract: The invention relates to a method for the storage of cooling agents without caking, characterized in that the latter are filled into standard packages having a maximum capacity of 25 l, with the proviso that (a) the packages are filled to 50% maximum, and (b) the amount filled into the package does not exceed 10 kg.
    Type: Application
    Filed: February 11, 2016
    Publication date: December 28, 2017
    Inventors: Oliver Lenz, Michael Michler, Jörg Niekerken, Jürgen Siewert, Christian Wolter
  • Patent number: 9841512
    Abstract: An inspection system with radiation-induced false count mitigation includes an illumination source configured to illuminate a sample, a detector assembly comprising an illumination sensor configured to detect illumination from the sample, and one or more radiation sensors configured to detect particle radiation, and control circuitry communicatively coupled to the detector. The control circuitry is configured to perform the steps of determining a set of radiation detection events based on one or more radiation signals received from the radiation sensors, determining a set of imaging events based on the illumination signal received from the illumination sensor, comparing the set of radiation detection events to the set of imaging events to generate a set of coincidence events, wherein the set of coincidence events comprises simultaneous imaging and radiation detection events, and excluding the set of coincidence events from the set of imaging events to generate a set of identified defect sites.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: December 12, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Ximan Jiang, Anatoly Romanovsky, Christian Wolters, Stephen Biellak, Mous Tatarkhanov
  • Publication number: 20170216802
    Abstract: Suggested is a process for the production of solid cooling agents, wherein a pre-scraped melt, i.e., a melt of menthol compounds with added seed crystals is applied to a pre-cooled area by even deposition of drops.
    Type: Application
    Filed: July 26, 2015
    Publication date: August 3, 2017
    Inventors: Jürgen Siewert, Michael Michler, Jörg Niederken, Oliver Lenz, Christian Wolter
  • Patent number: 9678350
    Abstract: A method and system for providing illumination is disclosed. The method may include providing a laser having a predetermined wavelength; performing at least one of: beam splitting or beam scanning prior to a frequency conversion; converting a frequency of each output beam of the at least one of: beam splitting or beam scanning; and providing the frequency converted output beam for illumination.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: June 13, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Christian Wolters, Jijen Vazhaeparambil, Dirk Woll, Anatoly Romanovsky, Bret Whiteside, Stephen Biellak, Guoheng Zhao
  • Publication number: 20160334516
    Abstract: An inspection system with radiation-induced false count mitigation includes an illumination source configured to illuminate a sample, a detector assembly comprising an illumination sensor configured to detect illumination from the sample, and one or more radiation sensors configured to detect particle radiation, and control circuitry communicatively coupled to the detector. The control circuitry is configured to perform the steps of determining a set of radiation detection events based on one or more radiation signals received from the radiation sensors, determining a set of imaging events based on the illumination signal received from the illumination sensor, comparing the set of radiation detection events to the set of imaging events to generate a set of coincidence events, wherein the set of coincidence events comprises simultaneous imaging and radiation detection events, and excluding the set of coincidence events from the set of imaging events to generate a set of identified defect sites.
    Type: Application
    Filed: November 19, 2015
    Publication date: November 17, 2016
    Inventors: Ximan Jiang, Anatoly Romanovsky, Christian Wolters, Stephen Biellak
  • Publication number: 20160097727
    Abstract: A wafer scanning system includes imaging collection optics to reduce the effective spot size. Smaller spot size decreases the number of photons scattered by the surface proportionally to the area of the spot. Air scatter is also reduced. TDI is used to produce a wafer image based on a plurality of image signals integrated over the direction of linear motion of the wafer. An illumination system floods the wafer with light, and the task of creating the spot is allocated to the imaging collection optics.
    Type: Application
    Filed: October 3, 2014
    Publication date: April 7, 2016
    Inventors: Jijen Vazhaeparambil, Guoheng Zhao, Daniel Kavaldjiev, Anatoly Romanovsky, Ivan Maleev, Christian Wolters, Stephen Biellak, Bret Whiteside, Donald Pettibone, Yung-Ho Alex Chuang, David W. Shortt
  • Patent number: 9255891
    Abstract: Methods and systems for reshaping the beam intensity distribution of an illumination light supplied to a specimen under inspection are presented. A scanning surface inspection system includes a beam shaping element that flattens the beam intensity distribution of a beam of light generated by an illumination source. The reshaped illumination light is directed to the wafer surface over an illumination spot. With a flattened beam intensity distribution, the incident beam power can be increased without the beam intensity exceeding the damage threshold of the wafer at any particular location. In addition, the illumination spot is shaped by the beam shaping element to have a variable beam width in a direction parallel to the inspection track. The location of a defect within an inspection area having a variable beam width is estimated based on an analysis of the output of the detector.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: February 9, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Christian Wolters, Zhiwei Xu, Juergen Reich
  • Patent number: 9194812
    Abstract: The disclosure is directed to a system and method of managing illumination energy applied to illuminated portions of a scanned wafer to mitigate illumination-induced damage without unnecessarily compromising SNR of an inspection system. The wafer may be rotated at a selected spin frequency for scanning wafer defects utilizing the inspection system. Illumination energy may be varied over at least one scanned region of the wafer as a function of radial distance of an illuminated portion from the center of the wafer and the selected spin frequency of the wafer. Illumination energy may be further applied constantly over one or more scanned regions of the wafer beyond a selected distance from the center of the wafer.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: November 24, 2015
    Assignee: KLA-Tencor Corporation
    Inventors: Christian Wolters, Aleksey Petrenko, Kurt L. Haller, Juergen Reich, Zhiwei Xu, Stephen Biellak, George Kren
  • Publication number: 20150330907
    Abstract: A method and apparatus for producing high frequency dynamically focused oblique laser illumination for a spinning wafer inspection system. The focus is changed by changing the beam direction incidence angle so as to bring focal spot onto the wafer surface. Disclosed herein is a system and method for automatic beam shaping (i.e., spot size) and steering (i.e., position) for a spinning wafer inspection system, combined into a single module. Also disclosed is a method and system for measuring the beam position/size/shape and angle with sufficient resolution to make corrections using feedback from the monitor.
    Type: Application
    Filed: November 30, 2014
    Publication date: November 19, 2015
    Applicant: KLA-TENCOR CORPORATION
    Inventors: Christian Wolters, Bret Whiteside, Anatoly Romanovsky