Patents by Inventor Christina Leinenbach

Christina Leinenbach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9517928
    Abstract: A micromechanical functional apparatus, particularly a loudspeaker apparatus, includes a substrate, at least one circuit chip mounted on the substrate, and an enveloping package in which the circuit chip is packaged. The functional apparatus further includes a micromechanical functional arrangement, particularly a loudspeaker arrangement having a plurality of micromechanical loudspeakers, which is mounted on the enveloping package. A covering device is mounted above the micromechanical functional arrangement, particularly the loudspeaker arrangement, opposite the enveloping package. A method is implemented to manufacture the micromechanical functional apparatus.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: December 13, 2016
    Assignee: Robert Bosch GmbH
    Inventors: Ricardo Ehrenpfordt, Mathias Bruendel, Andre Gerlach, Christina Leinenbach, Sonja Knies, Ando Feyh, Ulrike Scholz
  • Patent number: 9269831
    Abstract: A micromechanical functional apparatus, particularly a loudspeaker apparatus, includes a substrate having a top and an underside and at least one circuit chip mounted on the underside in a first cavity. The apparatus further includes a micromechanical functional arrangement, particularly a loudspeaker arrangement, having a plurality of micromechanical loudspeakers mounted on the top in a second cavity. A covering device is mounted above the micromechanical functional arrangement on the top. An appropriate method is implemented to manufacture the micromechanical functional apparatus.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: February 23, 2016
    Assignee: Robert Bosch GmbH
    Inventors: Ricardo Ehrenpfordt, Mathias Bruendel, Andre Gerlach, Christina Leinenbach, Sonja Knies, Ando Feyh, Ulrike Scholz
  • Patent number: 8981499
    Abstract: A MEMS chip package includes a first chip, a second chip, a first coupling element, and a first redistribution layer. The first chip has a first chip surface and a second chip surface, which is opposite the first chip surface. The second chip has a first chip surface and a second chip surface, which is opposite the first chip surface. The first coupling element couples the first chip surface of the second chip to the first chip surface of the first chip, so that a first cavity is defined between the first chip and the second chip. The first redistribution layer is mounted on the second chip surface of the second chip and is configured to provide contact with a substrate.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: March 17, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Ricardo Ehrenpfordt, Mathias Bruendel, Andre Gerlach, Christina Leinenbach, Sonja Knies, Ando Feyh, Ulrike Scholz
  • Patent number: 8946090
    Abstract: A method for selective etching of an SiGe mixed semiconductor layer on a silicon semiconductor substrate by dry chemical etching of the SiGe mixed semiconductor layer with the aid of an etching gas selected from the group including ClF3 and/or ClF5, a gas selected from the group including Cl2 and/or HCl being added to the etching gas.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: February 3, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Volker Becker, Franz Laermer, Tino Fuchs, Christina Leinenbach
  • Patent number: 8637945
    Abstract: A component having a robust, but acoustically sensitive microphone structure is provided and a simple and cost-effective method for its production. This microphone structure includes an acoustically active diaphragm, which functions as deflectable electrode of a microphone capacitor, a stationary, acoustically permeable counter element, which functions as counter electrode of the microphone capacitor, and an arrangement for detecting and analyzing the capacitance changes of the microphone capacitor. The diaphragm is realized in a diaphragm layer above the semiconductor substrate of the component and covers a sound opening in the substrate rear. The counter element is developed in a further layer above the diaphragm. This further layer generally extends across the entire component surface and compensates level differences, so that the entire component surface is largely planar according to this additional layer.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: January 28, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Frank Reichenbach, Thomas Buck, Jochen Zoellin, Franz Laermer, Ulrike Scholz, Kathrin van Teeffelen, Christina Leinenbach
  • Publication number: 20130327147
    Abstract: A micromechanical device measures an acceleration, a pressure or the like. It comprises a substrate having at least one fixed electrode, a seismic mass moveably arranged on the substrate, at least one ground electrode, which is arranged on the seismic mass, and resetting means for returning the seismic mass into an initial position, wherein the fixed electrode and the ground electrode are configured in one measurement plane for measuring an acceleration, a pressure or the like in the measurement plane, and wherein the fixed electrode and the ground electrode are configured for measuring an acceleration, pressure or the like acting on the seismic mass perpendicular to the measurement plane. The disclosure likewise relates to a corresponding method and a corresponding use.
    Type: Application
    Filed: September 19, 2011
    Publication date: December 12, 2013
    Applicant: Robert Bosch GmbH
    Inventors: Ando Feyh, Christina Leinenbach, Axel Franke, Gary O'Brien
  • Patent number: 8529781
    Abstract: A method for producing a component, and a component, in particular a micromechanical and/or microfluidic and/or microelectronic component, is provided, the component including at least one patterned material region, and in a first step the patterned material region is produced in that microparticles of a first material are embedded in a matrix of a second material, and in a second step the patterned material region is rendered porous by etching using a dry etching method or a gas-phase etching method.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: September 10, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Tino Fuchs, Christina Leinenbach
  • Publication number: 20130228937
    Abstract: A micromechanical sound transducer arrangement includes an electrical printed circuit board having a front side and a rear side. A micromechanical sound transducer structure is applied to the front side using the flip-chip method. The printed circuit board defines an opening for emitting soundwaves in the region of the micromechanical sound transducer structure.
    Type: Application
    Filed: March 1, 2013
    Publication date: September 5, 2013
    Applicant: Robert Bosch GmbH
    Inventors: Ricardo Ehrenpfordt, Mathias Bruendel, Andre Gerlach, Christina Leinenbach, Sonja Knies, Ando Feyh, Ulrike Scholz
  • Patent number: 8501516
    Abstract: A method for producing micromechanical patterns having a relief-like sidewall outline shape or an angle of inclination that is able to be set, the micromechanical patterns being etched out of a SiGe mixed semiconductor layer that is present on or deposited on a silicon semiconductor substrate, by dry chemical etching of the SiGe mixed semiconductor layer; the sidewall outline shape of the micromechanical pattern being developed by varying the germanium proportion in the SiGe mixed semiconductor layer that is to be etched; a greater germanium proportion being present in regions that are to be etched more strongly; the variation in the germanium proportion in the SiGe mixed semiconductor layer being set by a method selected from the group including depositing a SiGe mixed semiconductor layer having varying germanium content, introducing germanium into a silicon semiconductor layer or a SiGe mixed semiconductor layer, introducing silicon into a germanium layer or an SiGe mixed semiconductor layer and/or by therm
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: August 6, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Franz Laermer, Tino Fuchs, Christina Leinenbach
  • Patent number: 8492188
    Abstract: A method for producing a micromechanical component is described. The method includes providing a substrate having a layer system including an insulating material situated on the substrate, a conductive layer section and a protective layer structure connected to the conductive layer section, which borders a section of the insulating material. The method furthermore includes carrying out an isotropic etching process for removing a part of the insulating material, the conductive layer section and the protective layer structure preventing the removal of the bordered section of the insulating material; and a structural element being developed, which includes the conductive layer section, the protective layer structure and the bordered section of the insulating material.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: July 23, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Heiko Stahl, Christina Leinenbach, Axel Franke, Jochen Reinmuth, Ando Feyh, Christian Rettig
  • Patent number: 8466042
    Abstract: A method for manufacturing separated micromechanical components situated on a silicon substrate includes the following steps of a) providing separation trenches on the substrate via an anisotropic plasma deep etching method, b) irradiating the area of the silicon substrate which forms the base of the separation trenches using laser light, the silicon substrate being converted from a crystalline state into an at least partially amorphous state by the irradiation in this area, and c) inducing mechanical stresses in the substrate. In one specific embodiment, cavities are etched simultaneously with the etching of the separation trenches. The etching depths can be controlled via the RIE lag effect.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: June 18, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Franz Laermer, Kathrin Van Teeffelen, Christina Leinenbach
  • Patent number: 8353213
    Abstract: A sensor element is provided for sensing accelerations in three spatial directions, which furnishes reliable measurement results and moreover can be implemented economically and with a small configuration. The sensor element encompasses at least one seismic mass deflectable in three spatial directions, a diaphragm structure that functions as a suspension mount for the seismic mass, and at least one stationary counterelectrode for capacitive sensing of the deflections of the diaphragm structure. According to the exemplary embodiments and/or exemplary methods of the present invention, the diaphragm structure encompasses at least four electrode regions, electrically separated from one another, that are mechanically coupled via the seismic mass.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: January 15, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Jochen Zoellin, Axel Franke, Kathrin Van Teeffelen, Christina Leinenbach
  • Publication number: 20120129291
    Abstract: A method for producing a micromechanical component is described. The method includes providing a substrate having a layer system including an insulating material situated on the substrate, a conductive layer section and a protective layer structure connected to the conductive layer section, which borders a section of the insulating material. The method furthermore includes carrying out an isotropic etching process for removing a part of the insulating material, the conductive layer section and the protective layer structure preventing the removal of the bordered section of the insulating material; and a structural element being developed, which includes the conductive layer section, the protective layer structure and the bordered section of the insulating material.
    Type: Application
    Filed: November 15, 2011
    Publication date: May 24, 2012
    Inventors: Heiko Stahl, Christina Leinenbach, Axel Franke, Jochen Reinmuth, Ando Feyh, Christian Rettig
  • Patent number: 8182707
    Abstract: A method for etching a layer that is to be removed on a substrate, in which a Si1-xGex layer is the layer to be removed, this layer being removed, at least in areas, in gas phase etching with the aid of an etching gas, in particular ClF3. The etching behavior of the Si1-xGex layer can be controlled via the Ge portion in the Si1-xGex layer. The etching method is particularly well-suited for manufacturing self-supporting structures in a micromechanical sensor and for manufacturing such self-supporting structures in a closed hollow space, because the Si1-xGex layer, as a sacrificial layer or filling layer, is etched highly selectively relative to silicon.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: May 22, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Franz Laermer, Silvia Kronmueller, Tino Fuchs, Christina Leinenbach
  • Publication number: 20120091544
    Abstract: A component having a robust, but acoustically sensitive microphone structure is provided and a simple and cost-effective method for its production. This microphone structure includes an acoustically active diaphragm, which functions as deflectable electrode of a microphone capacitor, a stationary, acoustically permeable counter element, which functions as counter electrode of the microphone capacitor, and an arrangement for detecting and analyzing the capacitance changes of the microphone capacitor. The diaphragm is realized in a diaphragm layer above the semiconductor substrate of the component and covers a sound opening in the substrate rear. The counter element is developed in a further layer above the diaphragm. This further layer generally extends across the entire component surface and compensates level differences, so that the entire component surface is largely planar according to this additional layer.
    Type: Application
    Filed: April 7, 2010
    Publication date: April 19, 2012
    Inventors: Frank Reichenbach, Thomas Buck, Jochen Zoellin, Franz Laermer, Ulrike Scholz, Kathrin van Teeffelen, Christina Leinenbach
  • Publication number: 20120018779
    Abstract: A method for producing micromechanical patterns having a relief-like sidewall outline shape or an angle of inclination that is able to be set, the micromechanical patterns being etched out of a SiGe mixed semiconductor layer that is present on or deposited on a silicon semiconductor substrate, by dry chemical etching of the SiGe mixed semiconductor layer; the sidewall outline shape of the micromechanical pattern being developed by varying the germanium proportion in the SiGe mixed semiconductor layer that is to be etched; a greater germanium proportion being present in regions that are to be etched more strongly; the variation in the germanium proportion in the SiGe mixed semiconductor layer being set by a method selected from the group including depositing a SiGe mixed semiconductor layer having varying germanium content, introducing germanium into a silicon semiconductor layer or a SiGe mixed semiconductor layer, introducing silicon into a germanium layer or an SiGe mixed semiconductor layer and/or by therm
    Type: Application
    Filed: October 13, 2008
    Publication date: January 26, 2012
    Inventors: Franz Laermer, Tino Fuchs, Christina Leinenbach
  • Patent number: 7989263
    Abstract: In a method for manufacturing a micromechanical chip, a sacrificial layer and an epitaxy layer are initially applied to a semiconductor substrate to produce a layer stack. An opening is subsequently introduced into the epitaxy layer from the front side of the layer stack. In order to electrically insulate the subsequent filling of the opening using a conductive contact layer from the material of the epitaxy layer, the walls of the opening are provided with an insulating layer. For removing the sacrificial layer and thus for producing the chip, separation trenches are subsequently etched through the epitaxy layer to the sacrificial layer also from the front side of the layer stack, which separation trenches also delimit the lateral extension of the chip.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: August 2, 2011
    Assignee: Robert Bosch GmbH
    Inventors: Torsten Kramer, Christoph Schelling, Christina Leinenbach
  • Publication number: 20110163398
    Abstract: A method for manufacturing separated micromechanical components situated on a silicon substrate includes the following steps of a) providing separation trenches on the substrate via an anisotropic plasma deep etching method, b) irradiating the area of the silicon substrate which forms the base of the separation trenches using laser light, the silicon substrate being converted from a crystalline state into an at least partially amorphous state by the irradiation in this area, and c) inducing mechanical stresses in the substrate. In one specific embodiment, cavities are etched simultaneously with the etching of the separation trenches. The etching depths can be controlled via the RIE lag effect.
    Type: Application
    Filed: April 3, 2009
    Publication date: July 7, 2011
    Inventors: Franz Laermer, Kathrin Van Teeffelen, Christina Leinenbach
  • Patent number: 7851248
    Abstract: A capping technology is provided in which, despite the fact that structures which are surrounded by a silicon-germanium filling layer are exposed using ClF3 etching through micropores in the silicon cap, an etching attack on the silicon cap is prevented, namely, either by particularly selective (approximately 10,000:1 or higher) adjustment of the etching process itself, or by using the finding that the oxide of a germanium-rich layer, in contrast to oxidized porous silicon, is not stable but instead may be easily dissolved, to protect the silicon cap.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: December 14, 2010
    Assignee: Robert Bosch GmbH
    Inventors: Silvia Kronmueller, Tino Fuchs, Ando Feyh, Christina Leinenbach, Marco Lammer
  • Publication number: 20100294710
    Abstract: A method for producing a component, and a component, in particular a micromechanical and/or microfluidic and/or microelectronic component, is provided, the component including at least one patterned material region, and in a first step the patterned material region is produced in that microparticles of a first material are embedded in a matrix of a second material, and in a second step the patterned material region is rendered porous by etching using a dry etching method or a gas-phase etching method.
    Type: Application
    Filed: May 4, 2007
    Publication date: November 25, 2010
    Applicant: ROBERT BOSCH GMBH
    Inventors: Tino Fuchs, Christina Leinenbach