Patents by Inventor Christine Elaine Tinberg

Christine Elaine Tinberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220090133
    Abstract: The present invention relates to the use of oncolytic viruses (e.g., modified HSV-1 viruses) for the treatment of various types of cancer. In addition, the present invention relates to compositions and kits relating to such uses of oncolytic viruses.
    Type: Application
    Filed: March 3, 2020
    Publication date: March 24, 2022
    Inventors: Jason James DEVOSS, Walter Hans MEISEN, Christine Elaine TINBERG, Keegan COOKE, Achim Klaus MOESTA
  • Publication number: 20210171928
    Abstract: Polypeptides, and methods for their use, are disclosed that have an amino acid sequence at least 75% identical to the amino acid sequence of SEQ ID NO:1, are provided, wherein (a) the polypeptide degrades a PFQFQLPY (SEQ ID NO: 140) peptide and/or a PFPQPQQPF (SEQ ID NO: 68) at pH 4; (b) residue 467 is Ser, residue 267 is Glu, and residue 271 is Asp; and (c) the polypeptide comprises an amino acid change from SEQ ID NO: 1 at one or more residues selected from the group consisting of 221, 262E, 268, 269, 270, 319A, 320, 354E/Q/R/Y, 358S/Q/T, 368F/Q, 399, 402, 406, 424, 449, 461, 463, 105, 171, 172, 173, 174, and 456.
    Type: Application
    Filed: September 14, 2020
    Publication date: June 10, 2021
    Inventors: Ingrid Swanson PULTZ, Clancey WOLF, Justin Bloomfield SIEGEL, Christine Elaine TINBERG, Lance STEWART, David BAKER
  • Patent number: 10988748
    Abstract: Polypeptides, and methods for their use, are disclosed that have an amino acid sequence at least 75% identical to the amino acid sequence of SEQ ID NO:1, are provided, wherein (a) the polypeptide degrades a PFQPQLPY (SEQ ID NO: 140) peptide and/or a PFPQPQQPF (SEQ ID NO: 68) at pH 4; (b) residue 467 is Ser, residue 267 is Glu, and residue 271 is Asp; and (c) the polypeptide comprises an amino acid change from SEQ ID NO: 1 at one or more residues selected from the group consisting of 221, 262E, 268, 269, 270, 319A, 320, 354E/Q/R/Y, 358S/Q/T, 368F/Q, 399, 402, 406, 424, 449, 461, 463, 105, 171, 172, 173, 174, and 456.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: April 27, 2021
    Assignees: University of Washington, The Regents of the University of California
    Inventors: Ingrid Swanson Pultz, Clancey Wolf, Justin Bloomfield Siegel, Christine Elaine Tinberg, Lance Stewart, David Baker
  • Patent number: 10793846
    Abstract: Polypeptides, and methods for their use, are disclosed that have an amino acid sequence at least 75% identical to the amino acid sequence of SEQ ID NO: 1, are provided, wherein (a) the polypeptide degrades a PFQPQLPY (SEQ ID NO: 140) peptide and/or a PFPQPQQPF (SEQ ID NO: 68) at pH 4; (b) residue 467 is Ser, residue 267 is Glu, and residue 271 is Asp; and (c) the polypeptide comprises an amino acid change from SEQ ID NO: 1 at one or more residues selected from the group consisting of 221, 262E, 268, 269, 270, 319A, 320, 354E/Q/R/Y, 358S/Q/T, 368F/Q, 399, 402, 406, 424, 449, 461, 463, 105, 171, 172, 173, 174, and 456.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: October 6, 2020
    Assignees: University of Washington, The Regents of the University of California
    Inventors: Ingrid Swanson Pultz, Clancey Wolf, Justin Bloomfield Siegel, Christine Elaine Tinberg, Lance Stewart, David Baker
  • Publication number: 20200109387
    Abstract: Polypeptides, and methods for their use, are disclosed that have an amino acid sequence at least 75% identical to the amino acid sequence of SEQ ID NO:1, are provided, wherein (a) the polypeptide degrades a PFQPQLPY (SEQ ID NO: 140) peptide and/or a PFPQPQQPF (SEQ ID NO: 68) at pH 4; (b) residue 467 is Ser, residue 267 is Glu, and residue 271 is Asp; and (c) the polypeptide comprises an amino acid change from SEQ ID NO: 1 at one or more residues selected from the group consisting of 221, 262E, 268, 269, 270, 319A, 320, 354E/Q/R/Y, 358S/Q/T, 368F/Q, 399, 402, 406, 424, 449, 461, 463, 105, 171, 172, 173, 174, and 456.
    Type: Application
    Filed: December 18, 2019
    Publication date: April 9, 2020
    Inventors: Ingrid Swanson PULTZ, Clancey WOLF, Justin Bloomfield SIEGEL, Christine Elaine TINBERG, Lance STEWART, David BAKER
  • Publication number: 20180142226
    Abstract: Polypeptides, and methods for their use, are disclosed that have an amino acid sequence at least 75% identical to the amino acid sequence of SEQ ID NO: 1, are provided, wherein (a) the polypeptide degrades a PFQPQLPY (SEQ ID NO: 140) peptide and/or a PFPQPQQPF (SEQ ID NO: 68) at pH 4; (b) residue 467 is Ser, residue 267 is Glu, and residue 271 is Asp; and (c) the polypeptide comprises an amino acid change from SEQ ID NO: 1 at one or more residues selected from the group consisting of 221, 262E, 268, 269, 270, 319A, 320, 354E/Q/R/Y, 358S/Q/T, 368F/Q, 399, 402, 406, 424, 449, 461, 463, 105, 171, 172, 173, 174, and 456.
    Type: Application
    Filed: June 8, 2016
    Publication date: May 24, 2018
    Inventors: Ingrid Swanson PULTZ, Clancey WOLF, Justin Bloomfield SIEGEL, Christine Elaine TINBERG, Lance STEWART, David BAKER
  • Publication number: 20170363648
    Abstract: Disclosed is a biosensor engineered to conditionally respond to the presence of specific small molecules, the biosensors including conditionally stable ligand-binding domains (LBDs) which respond to the presence of specific small molecules, wherein readout of binding is provided by reporter genes or transcription factors (TFs) fused to the LBDs.
    Type: Application
    Filed: August 31, 2017
    Publication date: December 21, 2017
    Inventors: George M. Church, Justin Feng, Daniel J. Mandell, David Baker, Stanley Fields, Benjamin Ward Jester, Christine Elaine Tinberg
  • Patent number: 9766255
    Abstract: Disclosed is a biosensor engineered to conditionally respond to the presence of specific small molecules, the biosensors including conditionally stable ligand-binding domains (LBDs) which respond to the presence of specific small molecules, wherein readout of binding is provided by reporter genes or transcription factors (TFs) fused to the LBDs.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: September 19, 2017
    Assignees: President and Fellows of Harvard College, University of Washington
    Inventors: George M. Church, Justin Feng, Daniel J. Mandell, David Baker, Stanley Fields, Benjamin Ward Jester, Christine Elaine Tinberg
  • Publication number: 20160202256
    Abstract: Disclosed is a biosensor engineered to conditionally respond to the presence of specific small molecules, the biosensors including conditionally stable ligand-binding domains (LBDs) which respond to the presence of specific small molecules, wherein readout of binding is provided by reporter genes or transcription factors (TFs) fused to the LBDs.
    Type: Application
    Filed: January 12, 2016
    Publication date: July 14, 2016
    Inventors: George M. Church, Justin Feng, Daniel J. Mandell, David Baker, Stanley Fields, Benjamin Ward Jester, Christine Elaine Tinberg