Patents by Inventor Christoph Herrmann

Christoph Herrmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8378307
    Abstract: An imaging system includes a scintillator array (202) and a digital photomultiplier array (204). A photon counting channel (212), an integrating channel (210), and a moment generating channel (214) process the output signal of the digital photomultiplier array (204). A reconstructor (122) spectrally resolves the first, the second and the third output signals. In one embodiment, a controller (232) activates the photon counting channel (212) to process the digital signal only if a radiation flux is below a predetermined threshold. An imaging system includes at least one direct conversion layer (302) and at least two scintillator layers (304) and corresponding photosensors (306). A photon counting channel (212) processes an output of the at least one direct conversion layer (302), and an integrating channel (210) and a moment generating channel (214) process respective outputs of the photosensors (306). A reconstructor (122) spectrally resolves the first, the second and the third output signals.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: February 19, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Christian Baeumer, Christoph Herrmann, Roger Steadman, Walter Ruetten
  • Patent number: 8373132
    Abstract: The invention relates to a radiation detector and a method for producing such a detector, wherein the detector comprises a stack of the scintillator elements and photodiode arrays. The PDAs extend with electrical leads into a rigid body filling a border volume lateral of the scintillator elements, wherein said leads end in a contact surface of the border volume. Moreover, a redistribution layer is disposed on the contact surface, wherein electrical lines of the redistribution layer contact the leads of the PDAs.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: February 12, 2013
    Assignee: Koninklijke Philips Electronics N. V.
    Inventors: Christian Baeumer, Oliver Muelhens, Roger Steadman Booker, Christoph Herrmann
  • Patent number: 8350221
    Abstract: The present invention relates to an apparatus (10) for generating countable pulses (30) from impinging X-ray (12, 14) in an imaging device (16), in particular in a computer tomograph, the apparatus (10) comprising a pre-amplifying element (18) adapted to convert a charge pulse (20) generated by an impinging photon (12, 14) into an electrical signal (22) and a shaping element (26) having a feedback loop (28) and adapted to convert the electrical signal (22) into an electrical pulse (30), wherein a delay circuit (38) is connected to the feedback loop (28) such that a time during which the feedback loop (28) collects charges of the electrical signal (22) is extended in order to improve an amplitude of the electrical pulse (30) at an output (56) of the shaping element (26). The invention also relates to a corresponding imaging device (16) and a corresponding method.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: January 8, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Roger Steadman Booker, Christian Baeumer, Christoph Herrmann, Guenter Zeitler, Hans Kr├╝ger, Walter Ruetten, Oliver Muelhens
  • Publication number: 20130003928
    Abstract: Device and method for synchronously switching activating a first and second charge accumulation section (31, 32) for a duration of a first and second predetermined sub-frame and a first and second X-ray source until lapse of a predetermined time frame for each of the first and second charge accumulation section (31, 32) for the accumulation of a plurality of temporally distributed partial charges according to an origin of a respective one of the plurality of spatially distributed X-ray sources so as to establish a specific relation between the focal spot position and a rule for accumulating the respective partial measurements, e.g. temporally distributed partial charges, belonging to the same focal spot positions, and to keep the focal spot temperature low by only activating the focal spot for a limited time according to a sub-frame.
    Type: Application
    Filed: March 4, 2011
    Publication date: January 3, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Rainer Pietig, Walter Ruetten, Christoph Herrmann
  • Patent number: 8288733
    Abstract: An apparatus includes an x-ray source (112) that generates transmission radiation that traverses an examination region (108) and a detector (116) that includes a photo-converter (204) that detects the radiation and generates a signal indicative thereof. The photo-converter (204) includes a light receiving region (260) on a back side (264).5The light receiving region receives light indicative of the detected radiation. The photo-converter (204) further includes read-out electronics (240) within a front side (228), which is located opposite the back side (264). The read-out electronics (240) process a photo-current indicative of the received light to generate the signal indicative of the detected radiation. The photo-converter (204) further includes a photodiode (208, 212, 232) 10disposed between the light receiving region (260) and the read-out electronics (240). The photodiode (212) produces the photo-current.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: October 16, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Christoph Herrmann, Rainer Kiewitt, Michael Overdick
  • Publication number: 20120228486
    Abstract: A radiation detector assembly (20) includes a detector array module (40) configured to convert radiation particles to electrical detection pulses, and an application specific integrated circuit (ASIC) (42) operatively connected with the detector array. The ASIC includes signal processing circuitry (60) configured to digitize an electrical detection pulse received from the detector array, and test circuitry (80) configured to inject a test electrical pulse into the signal processing circuitry. The test circuitry includes a current meter (84) configured to measure the test electrical pulse injected into the signal processing circuitry, and a charge pulse generator (82) configured to generate a test electrical pulse that is injected into the signal processing circuitry.
    Type: Application
    Filed: December 7, 2010
    Publication date: September 13, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Christoph Herrmann, Roger Steadman, Oliver Muelhens
  • Patent number: 8237128
    Abstract: The present invention relates to an apparatus (10) for counting X-ray photons (12, 14). The apparatus (10) comprises a sensor (16) adapted to convert a photon (12, 14) into a charge pulse, a processing element (18) adapted to convert the charge pulse (51) into an electrical pulse (53) and a first discriminator (20) adapted to compare the electrical pulse (53) against a first threshold (TH1) and to output an event (55) if the first threshold (TH1) is exceeded. A first counter (22) counts these events (55), unless counting is inhibited by a first gating element (24). The first gating element (24) is activated when the first discriminator (20) outputs the event (55), and it is deactivated, when the processing of a photon (12, 14) is found to be complete or about to be completed by a measurement or by the knowledge about the time that it takes to process a photon (12, 14) in the processing element (18). By activating and deactivating the first counter (22) pile-up events, i.e.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: August 7, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Roger Steadman Booker, Christian Baeumer, Christoph Herrmann, Guenter Zeitler
  • Patent number: 8193501
    Abstract: A detector unit (301) for detecting electromagnetic radiation (106), the detector unit (301) comprising a conversion material (332) adapted for converting impinging electromagnetic radiation (106) into electric charge carriers, a charge collection electrode (331) adapted for collecting the converted electric charge carriers, a shielding electrode (334, 335) adapted to form a capacitance with the charge collection electrode (331), and an evaluation circuit (312 to 315) electrically coupled with the charge collection electrode (331) and adapted for evaluating the electromagnetic radiation (106) based on the collected electric charge carriers.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: June 5, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Walter Rutten, Matthias Simon, Rainer Kiewitt, Christoph Herrmann, Bernd Menser
  • Publication number: 20120085915
    Abstract: The present invention relates to processing electronics (18) for a detector (12) of an X-ray imaging device (14), the processing electronics (18) with a pulse counter section (22) having at least one count output (30) and with an integrator section (24) having an intensity output (32), wherein the processing electronics (18) is adapted to be connected to a sensor (16) in such a manner that X-ray photons (58) arriving at the sensor (16) can be processed by the pulse counter section (22), by the integrator section (24), or both, and wherein the processing electronics (18) comprises a processor (34) adapted to be connected to the count output (30) and to the intensity output (32) and adapted to output a count result (K) that takes into account both count information (N) obtained at the count output (30) and intensity information (I) obtained at the intensity output (32), so that the count result (K) contains information (N) obtained from the pulse counter section (22) and information (M) obtained from the integr
    Type: Application
    Filed: September 23, 2008
    Publication date: April 12, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Christian Baeumer, Guenter Zeitler, Klaus Juergen Engel, Christoph Herrmann, Roger Steadman Booker
  • Patent number: 8154631
    Abstract: The application describes an X-ray detector, which uses direct X-ray conversion (DiCo) combined with CMOS pixel circuits. DiCo materials have to be used with high voltage to achieve a high field strength. This makes the sensor prone to leakage currents, which falsify the measured charge result. Moreover, most direct conversion materials suffer from large residual signals that lead to temporal artifacts (ghost images) in an X-ray image sequence. A circuit is described, which senses the sensor's dark current including residual signals from previous exposures before the sensor is exposed (again) to X-ray, and freezes relevant circuit parameters at the end of the sensing phase in such way, that the dark current (leakage current and residual signal) can still be drained during exposure. Therefore, the charge pulses generated in the sensor due to X-ray exposure can be integrated without charges carried by the leakage current or residual signal, thus obtaining a more accurate estimate of the deposited X-ray energy.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: April 10, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Christoph Herrmann, Walter Ruetten, Matthias Simon, Bernd Menser
  • Publication number: 20120032085
    Abstract: An imaging system includes a scintillator array (202) and a digital photomultiplier array (204). A photon counting channel (212), an integrating channel (210), and a moment generating channel (214) process the output signal of the digital photomultiplier array (204). A reconstructor (122) spectrally resolves the first, the second and the third output signals. In one embodiment, a controller (232) activates the photon counting channel (212) to process the digital signal only if a radiation flux is below a predetermined threshold. An imaging system includes at least one direct conversion layer (302) and at least two scintillator layers (304) and corresponding photosensors (306). A photon counting channel (212) processes an output of the at least one direct conversion layer (302), and an integrating channel (210) and a moment generating channel (214) process respective outputs of the photosensors (306). A reconstructor (122) spectrally resolves the first, the second and the third output signals.
    Type: Application
    Filed: March 15, 2010
    Publication date: February 9, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Christian Baeumer, Christoph Herrmann, Roger Steadman, Walter Ruetten
  • Patent number: 8098771
    Abstract: When transmitting medium access control protocol data units for the high speed downlink shared channel over a plurality of hybrid automatic repeat request processes, one of the processes can be in a retransmission procedure. In this case, stalling of the transmission can occur, because the medium access control layer for the high speed downlink shared channel of the receiver apparatus (3) buffers the following packet data units, when a preceding protocol data unit is waiting in the stalled process. To enable an early processing of the already received data, the receiver apparatus determines, whether the next expected service data units for a higher layer such as a radio link control layer, are included in the already received packet data units by taking into account the sequence number for the higher layer. Therefore, the medium access control layer for the high speed downlink shared channel accesses the data of the service data unit for the higher layer.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: January 17, 2012
    Assignees: Koninklijke Philips Electronics, N.V., Sharp Corporation
    Inventor: Christoph Herrmann
  • Publication number: 20120001084
    Abstract: A detector array (110) of an imaging system (100) includes a radiation sensitive detector (114, 116) that detects radiation and generates a signal indicative thereof. A current-to-frequency (I/F) converter (202) converts the signal to a pulse train having a frequency indicative of the signal for an integration period. Circuitry (120) generates a first moment and at least one higher order moment based on the pulse train.
    Type: Application
    Filed: February 18, 2010
    Publication date: January 5, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Roland Proksa, Christoph Herrmann, Walter Ruetten
  • Publication number: 20110315888
    Abstract: A detector tile (116) of an imaging detector array (112) includes a scintillator array (202), a photosensor array (204), which includes a plurality of photosensitive pixels, optically coupled to the scintillator array (202), and a current-to-frequency (I/F) converter (302). The I/F converter (302) includes an integrator (304) that integrates charge output by a photosensitive pixel during an integration period and generates a signal indicative thereof and a comparator (310) that generates a pulse when the generated signal satisfies predetermined criteria during the integration period. A reset device (316) resets the integrator (304) in response to the comparator (310) generating a pulse. Circuitry (320, 324) samples the generated signal at a beginning of the integration period and/or at an end of the integration period and generates quantized digital data indicative thereof. Logic (322) estimates the charge at the input of the integrator (304) based on the generated digital data.
    Type: Application
    Filed: February 9, 2010
    Publication date: December 29, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Christoph Herrmann, Michael Overdick
  • Publication number: 20110211668
    Abstract: The invention relates to converter element (100) for a radiation detector, particularly for a Spectral CT scanner. The converter element (100) comprises at least two conversion cells (131) that are at least partially separated from each other by intermediate separation walls (135) which affect the spreading of electrical signals generated by incident radiation (X). The conversion cells (131) may particularly consist of a crystal of CdTe and/or CdZnTe. Said crystal is preferably grown by e.g. vapor deposition between preformed separation walls.
    Type: Application
    Filed: November 9, 2009
    Publication date: September 1, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Roger Steadman Booker, Matthias Simon, Christoph Herrmann, Bernd Menser, Jens Wiegert, Klaus Juergen Engel, Christian Baeumer, Oliver Muelhens
  • Publication number: 20110211669
    Abstract: The invention relates to a radiation detector (100) comprising a converter element (113) with an array (120) of first electrodes (121) for sampling electrical signals generated by incident radiation (X). With a connection circuit (130), at least two first electrodes (121) can selectively be coupled to a common readout unit (141) according to a given connection pattern (CP1). The effective pixel size along the path of incident radiation (X) can thus be adapted to the distribution of electrical signals, which is usually determined by the spectral composition of the incident radiation.
    Type: Application
    Filed: November 9, 2009
    Publication date: September 1, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Christoph Herrmann, Christian Baeumer, Roger Steadman Booker
  • Patent number: 7958542
    Abstract: For the transmission of an MBMS content to a plurality of user equipment units, the use of a p2m channel may only be beneficial if the number of joined user equipment units exceeds a threshold. However, counting is made difficult due to the fact that idle mode UE, also a non joined UE, may reply to the notification, and hence pretend a higher number of UEs which are ready and able to receive the MBMS content. According to the present invention, when joining the MBMS service, a number which is only known to the user equipment unit, as well as to those RNCs which will deliver the MBMS service for which the UE has joined, is provided to the UE. Whenever the UE replies to a service notification, it uses this number. The RNC determines a corresponding number and in case the number received from the UE matches the number determined by the RNC, the UE is counted. Advantageously, an integrity protection may be provided for the notification reply for joined UEs which are still in the idle mode.
    Type: Grant
    Filed: May 11, 2004
    Date of Patent: June 7, 2011
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: Christoph Herrmann
  • Patent number: 7953033
    Abstract: First and second data is transmitted simultaneously by modulating a first set of signal constellation points, corresponding to the first data, with second data thereby creating a second set of constellation points. The second set of constellation points comprises two subsets corresponding to two values of the first data. The constellation points are selected such that the minimum distance between the first and second subsets is not less than the minimum distance between the constellation points of the first set of constellation points.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: May 31, 2011
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Matthew P. J. Baker, Timothy J. Moulsley, Olivier J-M. Hus, Paul Bucknell, Christoph Herrmann
  • Publication number: 20110079865
    Abstract: The invention relates to a radiation detector (10), comprising an array of pixels (1), wherein each pixel (1) comprises a conversion layer of a semiconductor material (4) for converting incident radiation into electrical signals and wherein each pixel (1) is surrounded by a trench (3) that is at least partly filled with a barrier material that absorbs at least a part of photons generated by the incident radiation. The invention also relates to a method of manufacturing such a radiation detector (10).
    Type: Application
    Filed: June 9, 2009
    Publication date: April 7, 2011
    Applicant: KONNKLIJE PHILIPS ELECTRONICS N.V.
    Inventors: Gereon Vogtmeier, Christoph Herrmann, Klaus Juergen Engel
  • Publication number: 20110036989
    Abstract: A pulse shaper (124) includes an integrator (202) with a feedback capacitor (208) that stores integrated charge of a charge pulse indicative of a detected photon. An output pulse of the integrator includes a peak amplitude indicative of the detected photon. An end pulse identifier (214) identifies the end of the charge pulse. A controller (216) generates a control signal that invokes a reset of the integrator (202) when the end of the 5 pulse is identified. An energy discriminator (128) includes a chain of comparators (132) connected in series. An output of each of the comparators (702, 704) is influenced by an output of a previous one of the comparators 712 (702, 704). A decision component (706) determines an output of the comparators (702, 704), and a controller component (708) triggers the decision component (706) to store the output of the comparators (702, 704) 10 after lapse of a charge collection time.
    Type: Application
    Filed: March 20, 2009
    Publication date: February 17, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Aviv Marks, Christoph Herrmann, Ewald Roessl