Patents by Inventor Christopher J. Bettinger

Christopher J. Bettinger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11478178
    Abstract: This document describes a conformable substrate that includes a hydrogel having adhesion-promoting moieties, said adhesion-promoting moieties comprising one or more catechol groups. The conformable substrate includes an array of microelectrodes bonded to the hydrogel by the adhesion-promoting moieties via the one or more catechol groups. This document also describes a method for transfer printing of an electronic structure to a hydrogel. The method includes the steps of coating a donor substrate with a film of polyacrylic acid, crosslinking the film of polyacrylic acid in a solution comprising divalent ions, patterning a microelectrode array onto the crosslinked film of polyacrylic acid, laminating an adhesive hydrogel substrate onto the donor substrate coated by the crosslinked film of polyacrylic acid comprising the patterned microelectrode array, and separating the crosslinked film of polyacrylic acid from the donor substrate in a monovalent solution.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: October 25, 2022
    Assignee: Carnegie Mellon University
    Inventors: Christopher J. Bettinger, Haosheng Wu, Congcong Zhu
  • Patent number: 11458230
    Abstract: The present inventions in various aspects provide elastic biodegradable polymers. In various embodiments, the polymers are formed by the reaction of a multifunctional alcohol or ether and a difunctional or higher order acid to form a pre-polymer, which is cross-linked to form the elastic biodegradable polymer. In preferred embodiments, the cross-linking is performed by functionalization of one or more OR groups on the pre-polymer backbone with vinyl, followed by photopolymerization to form the elastic biodegradable polymer composition or material. Preferably, acrylate is used to add one or more vinyls to the backbone of the pre-polymer to form an acrylated pre-polymer. In various embodiments, acrylated pre-polymers are co-polymerized with one or more acrylated co-polymers.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: October 4, 2022
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Christopher J. Bettinger, Joost P. Bruggeman, Lino Da Silva Ferreira, Jeffrey M. Karp, Robert S. Langer, Christiaan Nijst, Andreas Zumbuehl, Jason Burdick, Sonia J. Kim
  • Publication number: 20210128794
    Abstract: The present inventions in various aspects provide elastic biodegradable polymers. In various embodiments, the polymers are formed by the reaction of a multifunctional alcohol or ether and a difunctional or higher order acid to form a pre-polymer, which is cross-linked to form the elastic biodegradable polymer. In preferred embodiments, the cross-linking is performed by functionalization of one or more OR groups on the pre-polymer backbone with vinyl, followed by photopolymerization to form the elastic biodegradable polymer composition or material. Preferably, acrylate is used to add one or more vinyls to the backbone of the pre-polymer to form an acrylated pre-polymer. In various embodiments, acrylated pre-polymers are co-polymerized with one or more acrylated co-polymers.
    Type: Application
    Filed: November 13, 2020
    Publication date: May 6, 2021
    Inventors: Christopher J. Bettinger, Joost P. Bruggeman, Lino da Silva Ferreira, Jeffrey M. Karp, Robert S. Langer, Christiaan Nijst, Andreas Zumbuehl, Jason Burdick, Sonia J. Kim
  • Patent number: 10864303
    Abstract: The present inventions in various aspects provide elastic biodegradable polymers. In various embodiments, the polymers are formed by the reaction of a multifunctional alcohol or ether and a difunctional or higher order acid to form a pre-polymer, which is cross-linked to form the elastic biodegradable polymer. In preferred embodiments, the cross-linking is performed by functionalization of one or more OR groups on the pre-polymer backbone with vinyl, followed by photopolymerization to form the elastic biodegradable polymer composition or material. Preferably, acrylate is used to add one or more vinyls to the backbone of the pre-polymer to form an acrylated pre-polymer. In various embodiments, acrylated pre-polymers are co-polymerized with one or more acrylated co-polymers.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: December 15, 2020
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Christopher J. Bettinger, Joost P. Bruggeman, Lino da Silva Ferreira, Jeffrey M. Karp, Robert S. Langer, Christiaan Nijst, Andreas Zumbuehl, Jason Burdick, Sonia J. Kim
  • Publication number: 20200029428
    Abstract: A flexible and stretchable integrated electronic device comprising a substrate having a stiffness gradient, wherein a rigid electronic device is embedded within the substrate. The stiffness gradient within the substrate prevents delamination at the interface between the substrate and the embedded device. A method of fabricating an integrated electronic device having a stiffness gradient comprises applying a curing agent to an uncured polymer base material.
    Type: Application
    Filed: September 17, 2019
    Publication date: January 23, 2020
    Applicant: CARNEGIE MELLON UNIVERSITY
    Inventors: Gary K. Fedder, Carmel Majidi, Philip R. LeDuc, Lee E. Weiss, Christopher J. Bettinger, Naser Naserifar
  • Patent number: 10462897
    Abstract: A flexible and stretchable integrated electronic device comprising a substrate having a stiffness gradient, wherein a rigid electronic device is embedded within the substrate. The stiffness gradient within the substrate prevents delamination at the interface between the substrate and the embedded device. A method of fabricating an integrated electronic device having a stiffness gradient comprises applying a curing agent to an uncured polymer base material.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: October 29, 2019
    Assignee: CARNEGIE MELLON UNIVERSITY
    Inventors: Gary K. Fedder, Carmel Majidi, Philip R. LeDuc, Lee E. Weiss, Christopher J. Bettinger, Naser Naserifar
  • Patent number: 10326139
    Abstract: An electrochemical cell includes an anode configured to produce multivalent cations during a discharge process, and a cathode comprising a catechol-bearing melanin. The cathode is configured to reversibly oxidize a catechol of the catechol-bearing melanin into a quinone by an extraction of the multivalent cation during a recharge process and reduce the quinone to the catechol by an insertion of the multivalent cation during the discharge process. The electrochemical cell includes an aqueous electrolyte solution in which the anode and the cathode are disposed, wherein the aqueous electrolyte solution is configured to transport the multivalent cations between the anode and the cathode.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: June 18, 2019
    Assignee: Carnegie Mellon University
    Inventors: Young Jo Kim, Jay F. Whitacre, Christopher J. Bettinger
  • Publication number: 20190091377
    Abstract: The present inventions in various aspects provide elastic biodegradable polymers. In various embodiments, the polymers are formed by the reaction of a multifunctional alcohol or ether and a difunctional or higher order acid to form a pre-polymer, which is cross-linked to form the elastic biodegradable polymer. In preferred embodiments, the cross-linking is performed by functionalization of one or more OR groups on the pre-polymer backbone with vinyl, followed by photopolymerization to form the elastic biodegradable polymer composition or material. Preferably, acrylate is used to add one or more vinyls to the backbone of the pre-polymer to form an acrylated pre-polymer. In various embodiments, acrylated pre-polymers are co-polymerized with one or more acrylated co-polymers.
    Type: Application
    Filed: November 30, 2018
    Publication date: March 28, 2019
    Inventors: Christopher J. Bettinger, Joost P. Bruggeman, Lino da Silva Ferreira, Jeffrey M. Karp, Robert S. Langer, Christiaan Nijst, Andreas Zumbuehl, Jason Burdick, Sonia J. Kim
  • Patent number: 10179195
    Abstract: The present inventions in various aspects provide elastic biodegradable polymers. In various embodiments, the polymers are formed by the reaction of a multifunctional alcohol or ether and a difunctional or higher order acid to form a pre-polymer, which is cross-linked to form the elastic biodegradable polymer. In preferred embodiments, the cross-linking is performed by functionalization of one or more OR groups on the pre-polymer backbone with vinyl, followed by photopolymerization to form the elastic biodegradable polymer composition or material. Preferably, acrylate is used to add one or more vinyls to the backbone of the pre-polymer to form an acrylated pre-polymer. In various embodiments, acrylated pre-polymers are co-polymerized with one or more acrylated co-polymers.
    Type: Grant
    Filed: February 17, 2014
    Date of Patent: January 15, 2019
    Assignee: Massachusetts Institue of Technology
    Inventors: Christopher J. Bettinger, Joost P. Bruggeman, Lino da Silva Ferreira, Jeffrey M. Karp, Robert S. Langer, Christiaan Nijst, Andreas Zumbuehl, Jason Burdick, Sonia J. Kim
  • Patent number: 10137300
    Abstract: In one aspect, an ingestible, electrical device, comprises one or more electrodes comprising a biocompatible conducting material and a biocompatible insulating material; a generator connected to the one or more electrodes; and an outer casing enclosing the one or more electrodes and the generator, the outer casing configured to dissolve in an aqueous environment of the organism; wherein the one or more electrodes have a first form factor when enclosed in the outer casing and a second form factor following a dissolution of the outer casing, the first form factor is a form factor that is collapsed an increased amount relative to an amount that the second form factor is collapsed, and the second form factor is a form factor that is collapsed a decreased amount relative to an amount that the first form factor is collapsed.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: November 27, 2018
    Assignee: Carnegie Mellon University
    Inventor: Christopher J. Bettinger
  • Patent number: 10034966
    Abstract: A method is described herein for the treatment of intracranial aneurysms. The method comprises inserting into an aneurysm an embolism coil coated with a polymeric coating comprising a genipin, such as genipin or a derivative thereof, thereby increasing the stability of clots within the aneurysm. According to one example, the coating is a poly(L-lactide-co-glycolide) (PLGA) is used to release genipin to crosslink fibrin clots thereby creating more stable occlusions. Increased clotting can improve segregation of the weakened portion of the blood vessel from the rest of the vasculature and reduce the risk of recurrence.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: July 31, 2018
    Assignee: Carnegie Mellon University
    Inventors: Christopher J. Bettinger, Michael Bruce Horowitz
  • Publication number: 20180206336
    Abstract: A flexible and stretchable integrated electronic device comprising a substrate having a stiffness gradient, wherein a rigid electronic device is embedded within the substrate. The stiffness gradient within the substrate prevents delamination at the interface between the substrate and the embedded device. A method of fabricating an integrated electronic device having a stiffness gradient comprises applying a curing agent to an uncured polymer base material.
    Type: Application
    Filed: March 16, 2018
    Publication date: July 19, 2018
    Applicant: CARNEGIE MELLON UNIVERSITY
    Inventors: Gary K. Fedder, Carmel Majidi, Philip R. LeDuc, Lee E. Weiss, Christopher J. Bettinger, Naser Naserifar
  • Patent number: 9985320
    Abstract: In one aspect, a water-activated, ingestible battery, comprises a cathode comprising a metal oxide with a decreased amount of toxicity, relative to an amount of toxicity of other metal oxides; an anode comprising a biocompatible, water stable compound, the anode infused with benign cations; a separator between the cathode and the anode; a cathodic lead comprising a first conducting material, the cathodic lead in contact with the cathode; an anodic lead comprising a second conducting material, the anodic lead in contact with the anode; and a cell casing comprising a water-permeable biocompatible polymer, the cathodic lead, and the anodic lead, with the cell casing enclosing the cathode, the anode, and the separator.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: May 29, 2018
    Assignee: Carnegie Mellon University
    Inventors: Christopher J. Bettinger, Jay Whitacre
  • Patent number: 9928968
    Abstract: In one aspect, an energy storage device comprises one or more organic electrodes comprising one or more melanin-based energy storage materials and cations, with the one or more melanin-based energy storage materials reversibly binding the cations while the biocompatible energy storage device is in an inactive state, and the one or more melanin-based energy storage materials releasing the cations to provide energy while the energy storage device is in an active state.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: March 27, 2018
    Assignee: Carnegie Mellon University
    Inventors: Christopher J. Bettinger, Jay F. Whitacre, Young Jo Kim
  • Patent number: 9884011
    Abstract: In one aspect, an ingestible, electrical device, comprises a substrate comprising a reservoir that is configured to hold one or more substances; a first film covering the reservoir, wherein the first film is at least partially metallic; a charge storage system connected to the first film, the charge storage system configured to deliver a transient electrochemical potential to the first film; wherein the first film is configured to prevent exposure of the substance to an aqueous environment in an organism, while the charge storage system delivers the transient electrochemical potential to the first film; and wherein the first film is configured for dissolution to expose the one or more substances to the aqueous environment in the organism, after the charge storage system stops delivering the transient electrochemical potential to the first film.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: February 6, 2018
    Assignee: Carnegie Mellon University
    Inventor: Christopher J. Bettinger
  • Publication number: 20180008825
    Abstract: In one aspect, an ingestible, electrical device, comprises one or more electrodes comprising a biocompatible conducting material and a biocompatible insulating material; a generator connected to the one or more electrodes; and an outer casing enclosing the one or more electrodes and the generator, the outer casing configured to dissolve in an aqueous environment of the organism; wherein the one or more electrodes have a first form factor when enclosed in the outer casing and a second form factor following a dissolution of the outer casing, the first form factor is a form factor that is collapsed an increased amount relative to an amount that the second form factor is collapsed, and the second form factor is a form factor that is collapsed a decreased amount relative to an amount that the first form factor is collapsed.
    Type: Application
    Filed: September 22, 2017
    Publication date: January 11, 2018
    Inventor: Christopher J. Bettinger
  • Publication number: 20180008748
    Abstract: A method is described herein for the treatment of intracranial aneurysms. The method comprises inserting into an aneurysm an embolism coil coated with a polymeric coating comprising a genipin, such as genipin or a derivative thereof, thereby increasing the stability of clots within the aneurysm. According to one example, the coating is a poly(L-lactide-co-glycolide) (PLGA) is used to release genipin to crosslink fibrin clots thereby creating more stable occlusions. Increased clotting can improve segregation of the weakened portion of the blood vessel from the rest of the vasculature and reduce the risk of recurrence.
    Type: Application
    Filed: May 19, 2017
    Publication date: January 11, 2018
    Inventors: Christopher J. Bettinger, Michael Bruce Horowitz
  • Patent number: 9770588
    Abstract: In one aspect, an ingestible, electrical device, comprises one or more electrodes comprising a biocompatible conducting material and a biocompatible insulating material; a generator connected to the one or more electrodes; and an outer casing enclosing the one or more electrodes and the generator, the outer casing configured to dissolve in an aqueous environment of the organism; wherein the one or more electrodes have a first form factor when enclosed in the outer casing and a second form factor following a dissolution of the outer casing, the first form factor is a form factor that is collapsed an increased amount relative to an amount that the second form factor is collapsed, and the second form factor is a form factor that is collapsed a decreased amount relative to an amount that the first form factor is collapsed.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: September 26, 2017
    Assignee: Carnegie Mellon University
    Inventor: Christopher J. Bettinger
  • Publication number: 20170156621
    Abstract: This document describes a conformable substrate that includes a hydrogel having adhesion-promoting moieties, said adhesion-promoting moieties comprising one or more catechol groups. The conformable substrate includes an array of microelectrodes bonded to the hydrogel by the adhesion-promoting moieties via the one or more catechol groups. This document also describes a method for transfer printing of an electronic structure to a hydrogel. The method includes the steps of coating a donor substrate with a film of polyacrylic acid, crosslinking the film of polyacrylic acid in a solution comprising divalent ions, patterning a microelectrode array onto the crosslinked film of polyacrylic acid, laminating an adhesive hydrogel substrate onto the donor substrate coated by the crosslinked film of polyacrylic acid comprising the patterned microelectrode array, and separating the crosslinked film of polyacrylic acid from the donor substrate in a monovalent solution.
    Type: Application
    Filed: December 8, 2016
    Publication date: June 8, 2017
    Inventors: Christopher J. Bettinger, Haosheng Wu, Congcong Zhu
  • Patent number: 9655999
    Abstract: A method is described herein for the treatment of intracranial aneurysms. The method comprises inserting into an aneurysm an embolism coil coated with a polymeric coating comprising a genipin, such as genipin or a derivative thereof, thereby increasing the stability of clots within the aneurysm. According to one example, the coating is a poly(L-lactide-co-glycolide) (PLGA) is used to release genipin to crosslink fibrin clots thereby creating more stable occlusions. Increased clotting can improve segregation of the weakened portion of the blood vessel from the rest of the vasculature and reduce the risk of recurrence.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: May 23, 2017
    Assignee: Carnegie Mellon University
    Inventors: Christopher J. Bettinger, Michael Bruce Horowitz