Patents by Inventor Christopher J. Myatt

Christopher J. Myatt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9658222
    Abstract: A cartridge for processing a sample includes (a) a planar waveguide with upper and lower planar surfaces defining an optical axis therebetween, wherein the upper planar surface has a plurality of capture molecules bound thereto, (b) a lens portion, coupled to the planar waveguide, for focusing and refracting a light beam propagating parallel to, but offset from, the optical axis such that the light beam couples into the planar waveguide and propagates therein along the optical axis at a non-zero, internal propagation angle ? relative to the upper planar surface, and (c) a sample chamber for positioning the sample in contact with the plurality of capture molecules such that a target analyte of the sample is detectable through (i) an assay involving the target analyte and the capture molecules and (ii) evanescent illumination of the assay using the light beam within the planar waveguide.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: May 23, 2017
    Assignee: Mbio Diagnostics, Inc.
    Inventors: Kevin D. Moll, Kurt R. Vogel, Marie J. Delaney, Michael J. Lochhead, Christopher J. Myatt
  • Publication number: 20160187333
    Abstract: A cartridge for processing a sample includes (a) a planar waveguide with upper and lower planar surfaces defining an optical axis therebetween, wherein the upper planar surface has a plurality of capture molecules bound thereto, (b) a lens portion, coupled to the planar waveguide, for focusing and refracting a light beam propagating parallel to, but offset from, the optical axis such that the light beam couples into the planar waveguide and propagates therein along the optical axis at a non-zero, internal propagation angle ? relative to the upper planar surface, and (c) a sample chamber for positioning the sample in contact with the plurality of capture molecules such that a target analyte of the sample is detectable through (i) an assay involving the target analyte and the capture molecules and (ii) evanescent illumination of the assay using the light beam within the planar waveguide.
    Type: Application
    Filed: December 14, 2015
    Publication date: June 30, 2016
    Inventors: Kevin D. Moll, Kurt R. Vogel, Marie J. Delaney, Michael J. Lochhead, Christopher J. Myatt
  • Patent number: 9212995
    Abstract: A rapid diagnostic system that delivers a panel of serologic assay results using a small amount of blood, serum, or plasma is described. The system includes a disposable cartridge, including an integral lens portion coupled to a planar waveguide, and a reader instrument, based on planar waveguide imaging technology. The cartridge incorporates a microarray of recombinant antigens and antibody controls in a fluidic channel, providing multiple parallel fluorescence assay results for a single sample.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 15, 2015
    Assignee: MBio Diagnostics, Inc.
    Inventors: Kevin D. Moll, Kurt R. Vogel, Marie J. Delaney, Michael J. Lochhead, Christopher J. Myatt, Keagan B. Rowley
  • Publication number: 20150355178
    Abstract: The present disclosure pertains to detection of biomarkers in a sample. More particularly, the disclosure relates to methods for treating the sample to liberate certain analytes prior to the assay. Composition for disrupting the HIV virus and antibody-antigen complex to release p24 antigen is also disclosed. The disclosed methods and compositions are compatible with existing HIV antigen/antibody combination assays and improve the sensitivity of such assays.
    Type: Application
    Filed: September 4, 2013
    Publication date: December 10, 2015
    Inventors: Christopher J. Myatt, Daniel T. Nieuwlandt, Gregory McLintock Husar, Charles H. Greef
  • Patent number: 8697435
    Abstract: A system for sample preparation and analyte detection includes a cartridge, with a fluidic channel, a waveguide, and a capture spot. The system further includes a force field generator, an imaging system, and a fluid, which includes a sample potentially containing a target analyte, first type particles, which include binding moieties specific for the target analyte and are responsive to a force field, and second type particles, which include binding moieties specific for the target analyte and are capable of generating a signal. When the sample contains the target analyte, specific binding interactions between the target analyte and binding moieties link first and second type particles via the target analyte to form multiple-particle complex capturable at a capture spot. The force field allows manipulation of the particles and multiple-particle complex such that the detected signal from the second type particles is indicative of the target analyte within the sample.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: April 15, 2014
    Assignee: MBio Diagnostics, Inc.
    Inventors: James R. Heil, Michael J. Lochhead, Kevin D. Moll, Christopher J. Myatt
  • Patent number: 8586347
    Abstract: A rapid diagnostic system that delivers a panel of serologic assay results using a small amount of blood, serum, or plasma is described. The system includes a disposable cartridge and a reader instrument, based on planar waveguide imaging technology. The cartridge incorporates a microarray of recombinant antigens and antibody controls in a fluidic channel, providing multiple parallel fluorescence assay results for a single sample.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: November 19, 2013
    Assignee: MBio Diagnostics, Inc.
    Inventors: Michael J. Lochhead, Jeffrey Ives, Kathryn Todorof, Charles Greef, Marie J. Delaney, Kevin D. Moll, Kurt R. Vogel, Keagan B. Rowley, Evelyn S. Woodruff, John S. Dunn, Christopher J. Myatt, Daniel T. Nieuwlandt
  • Patent number: 8300993
    Abstract: A sample can be illuminated for analysis using apparatus including a light source, a planar waveguide, and a refractive volume. The light source provides light along a propagation vector. The planar waveguide is oriented such that the propagation vector is perpendicular to the normal vector of the planar waveguide and offset from the planar waveguide in a direction parallel to the normal vector of the planar waveguide. The refractive volume is positioned proximate to the planar waveguide and can optically coupling light provided by the light source to the planar waveguide.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: October 30, 2012
    Assignee: MBio Diagnostics, Inc.
    Inventors: Kevin D. Moll, Kurt R. Vogel, Marie J. Delaney, Michael J. Lochhead, Christopher J. Myatt
  • Publication number: 20120088230
    Abstract: A system for enumeration of objects such as cells in a sample is disclosed. The system uses a low-cost cartridge and a reader instrument, based on planar waveguide imaging technology. Cells of a blood sample may be stained with fluorescence-tagged antibodies and are loaded onto the cartridge where the differentially labeled cells may be distinguished and quantified.
    Type: Application
    Filed: October 11, 2011
    Publication date: April 12, 2012
    Inventors: Monique Givens, Jeffrey Ives, Michael J. Lochhead, Marie J. Delaney, Kevin D. Moll, Keagan B. Rowley, Kurt R. Vogel, Christopher J. Myatt
  • Publication number: 20120071342
    Abstract: A rapid diagnostic system that delivers a panel of serologic assay results using a small amount of blood, serum, or plasma is described. The system includes a disposable cartridge and a reader instrument, based on planar waveguide imaging technology. The cartridge incorporates a microarray of recombinant antigens and antibody controls in a fluidic channel, providing multiple parallel fluorescence assay results for a single sample.
    Type: Application
    Filed: September 15, 2011
    Publication date: March 22, 2012
    Applicant: MBIO DIAGNOSTICS, INC.
    Inventors: Michael J. Lochhead, Jeffrey Ives, Kathryn Todorof, Charles Greef, Marie J. Delaney, Kevin D. Moll, Kurt R. Vogel, Keagan B. Rowley, Evelyn S. Woodruff, John S. Dunn, Christopher J. Myatt, Daniel T. Nieuwlandt
  • Publication number: 20110065209
    Abstract: A system for sample preparation and analyte detection includes a cartridge, with a fluidic channel, a waveguide, and a capture spot. The system further includes a force field generator, an imaging system, and a fluid, which includes a sample potentially containing a target analyte, first type particles, which include binding moieties specific for the target analyte and are responsive to a force field, and second type particles, which include binding moieties specific for the target analyte and are capable of generating a signal. When the sample contains the target analyte, specific binding interactions between the target analyte and binding moieties link first and second type particles via the target analyte to form multiple-particle complex capturable at a capture spot. The force field allows manipulation of the particles and multiple-particle complex such that the detected signal from the second type particles is indicative of the target analyte within the sample.
    Type: Application
    Filed: August 30, 2010
    Publication date: March 17, 2011
    Applicant: mBio Diagnostics, Inc.
    Inventors: James R. Heil, Michael J. Lochhead, Kevin D. Moll, Christopher J. Myatt
  • Publication number: 20110012026
    Abstract: An apparatus for illuminating a sample includes a planar waveguide. The planar waveguide includes a first substrate, including a first outer surface and a first inner surface, and a second substrate, including a second outer surface and a second inner surface. The first and second inner surfaces of the first and second substrates, respectively, are spaced apart from each other and partly define a volume for confining the sample therein. The apparatus also includes a light source for providing light directed toward the planar waveguide, such that the light is optically coupled to and contained within the planar waveguide between the outer surfaces of the first and second substrates, while illuminating at least a portion of the sample confined within the volume.
    Type: Application
    Filed: September 16, 2010
    Publication date: January 20, 2011
    Applicant: MBIO DIAGNOSTICS, INC.
    Inventors: Kevin D. Moll, Kurt R. Vogel, Marie J. Delaney, Michael J. Lochhead, Christopher J. Myatt
  • Publication number: 20100284430
    Abstract: Systems, methods, circuits and/or devices for generating high repetition rate ultra-short pulses are described. As one of many examples, an optical pulse generating laser system is described that produces mode-locked optical pulses. The laser system incorporates an optical pulse generation device that includes two optical loops coupled via a beam splitter. In addition, the optical pulse generation device includes an optical gain medium that is associated with the first optical loop, and a saturable element that is disposed in either the first optical loop or the second optical loop. The saturable element is operable to modulate a group of optical pulses propagating in at least one of the first optical loop and the second optical loop to create a group of substantially regular modulated pulses.
    Type: Application
    Filed: February 8, 2008
    Publication date: November 11, 2010
    Applicant: Precision Photonics Corporation
    Inventors: Jacob Lasri, Kurt R. Vogel, Neil R. Claussen, Christopher J. Myatt
  • Publication number: 20090294051
    Abstract: A method of assembling precision optical or optomechanical components of otherwise incompatible chemistry that provides first and second components having respective first and second polished contacting surfaces to be bonded; deposits a thin film dielectric coating at the surface of the first and or second polished surface, and contacts the coated portion of the first or second components with the respective contacting surfaces to be bonded, while maintaining alignment of the two components, to form a single structure.
    Type: Application
    Filed: April 29, 2009
    Publication date: December 3, 2009
    Applicant: Precision Photonics Corporation
    Inventors: Nick Traggis, Neil R. Claussen, Ove Lyngnes, Christopher J. Myatt
  • Publication number: 20090294017
    Abstract: A method of assembling precision optical or optomechanical components of otherwise incompatible chemistry that provides first and second components having respective first and second polished contacting surfaces to be bonded; deposits a thin film dielectric coating at the surface of the first and or second polished surface, and contacts the coated portion of the first or second components with the respective contacting surfaces to be bonded, while maintaining alignment of the two components, to form a single structure.
    Type: Application
    Filed: November 3, 2008
    Publication date: December 3, 2009
    Applicant: Precision Photonics Corporation
    Inventors: Nick Traggis, Neil R. Claussen, Ove Lyngnes, Christopher J. Myatt
  • Publication number: 20090294050
    Abstract: This invention is a method of assembling precision optical or optomechanical components that provides first and second components having respective first and second polished contacting surfaces to be bonded; generates a hydrophilic surface on at least a portion of at least one of the first or second surfaces; rinses the hydrophilic portion with water or another suitable solvent; and contacts the hydrophilic portion of the first or second components with the respective contacting surfaces to be bonded, while maintaining alignment of the two components, to form a single structure
    Type: Application
    Filed: September 19, 2008
    Publication date: December 3, 2009
    Applicant: PRECISION PHOTONICS CORPORATION
    Inventors: Nick Traggis, Christopher J. Myatt
  • Patent number: 6870629
    Abstract: The invention allows for the accurate, real-time readout of the optical frequency of a swept-wavelength laser device by counting the number of fringes of a calibrated etalon that occur as the laser is swept. The distinguishing feature of the present invention is that the etalon fringe signal is phase-locked to a slave signal of a higher multiple frequency. The higher frequency of the slave signal divides the frequency interval of the etalon fringe spacing by the additional frequency multiple. The slave signal therefore generates a scale for optical frequency that is of higher resolution than possible with the etalon alone. The phase-lock also insures that the slave signal tracks monotonic scans of the optical frequency regardless of scan profile. The invention also allows for the precise, real-time control of the optical frequency of a laser during the sweep of the laser.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: March 22, 2005
    Assignee: Precision Photonics Corporation
    Inventors: Kurt R. Vogel, Timothy P. Dinneen, Michael E. Deeds, Jason R. Ensher, Christopher J. Myatt
  • Publication number: 20030035120
    Abstract: The invention describes devices and methods for determining the wavelength of coherent optical radiation such as is emitted from a laser source. The apparatus is monolithic with no moving parts and consists of optical components that generate signal periodic in the optical frequency of the coherent radiation detected by the component. Each optical component generates a signal with a different period. Differences between the periods of the signals generated by the optical frequency-dependent optical components provides a means of measuring optical wavelengths over a range far exceeding the free spectral range limitations of conventional interferometers. The method of the present invention allows for measurement of optical frequency with an uncertainty of much less than the period of the optical frequency-dependent optical components forming the apparatus.
    Type: Application
    Filed: April 10, 2002
    Publication date: February 20, 2003
    Inventors: Christopher J. Myatt, Kurt R. Vogel, Tim Dinneen, Jason R. Ensher