Patents by Inventor Christopher S. Yung

Christopher S. Yung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10989602
    Abstract: A recessed carbon nanotube article includes a base; a substrate disposed on the base; wells disposed in the substrate and bounded by the base and a substrate wall; and a carbon nanotube element disposed in individual wells and including vertically aligned carbon nanotubes such that a longitudinal length of the vertically aligned carbon nanotubes is less than a depth of the well in which the carbon nanotube element is disposed. A recessed carbon nanotube bolometer includes a base; a substrate on the base; radiation wells in the substrate; carbon nanotubes in the wells; thermistors and heaters on the membrane arranged as an electrical substitution member. A process for making a recessed carbon nanotube bolometer includes forming a substrate on a base; forming a radiation well in the substrate; forming carbon nanotubes in the well; disposing a cover on the wells; and forming a thermistor and a heater on the base.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: April 27, 2021
    Assignee: GOVERNMENT OF THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE
    Inventors: Christopher S. Yung, Nathan A. Tomlin, Daniel R. Schmidt
  • Publication number: 20200003622
    Abstract: A recessed carbon nanotube article includes a base; a substrate disposed on the base; wells disposed in the substrate and bounded by the base and a substrate wall; and a carbon nanotube element disposed in individual wells and including vertically aligned carbon nanotubes such that a longitudinal length of the vertically aligned carbon nanotubes is less than a depth of the well in which the carbon nanotube element is disposed. A recessed carbon nanotube bolometer includes a base; a substrate on the base; radiation wells in the substrate; carbon nanotubes in the wells; thermistors and heaters on the membrane arranged as an electrical substitution member. A process for making a recessed carbon nanotube bolometer includes forming a substrate on a base; forming a radiation well in the substrate; forming carbon nanotubes in the well; disposing a cover on the wells; and forming a thermistor and a heater on the base.
    Type: Application
    Filed: June 27, 2019
    Publication date: January 2, 2020
    Inventors: Christopher S. Yung, Nathan A. Tomlin, Daniel R. Schmidt