Patents by Inventor Christopher W. Petz

Christopher W. Petz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240136391
    Abstract: A microelectronic device comprises an access device comprising a source region and a drain region spaced from the source region, an insulative material vertically adjacent to the access device, and a capacitor within the insulative material and in electrical communication with the access device. The capacitor comprises a material comprising silicon oxynitride or titanium silicon nitride over surfaces of the insulative material, a first electrode comprising titanium nitride on the material, a dielectric material over the first electrode, and a second electrode on the dielectric material. Related methods of forming the microelectronic device and an electronic system including the microelectronic devices are also described.
    Type: Application
    Filed: October 18, 2022
    Publication date: April 25, 2024
    Inventors: Sanket S. Kelkar, Michael Mutch, Luca Fumagalli, Hisham Abdussamad Abbas, Brenda D. Kraus, Dojun Kim, Christopher W. Petz, Darwin Franseda Fan
  • Publication number: 20240071832
    Abstract: A variety of applications can include apparatus having p-channel metal-oxide-semiconductor (PMOS) transistors and n-channel metal-oxide-semiconductor (NMOS) transistors with different metal silicide contacts. The active area of the NMOS transistor can include a first metal silicide having a first metal element, where the first metal silicide is a vertical lowest portion of a contact for the NMOS. The PMOS transistor can include a stressor source/drain region to a channel region of the PMOS transistor and a second metal silicide directly contacting the stressor source/drain region without containing the first metal element. The process flow to form the PMOS and NMOS transistors can enable making simultaneous contacts by a pre-silicide in the active area of the NMOS transistor, without affecting stressor source/drain regions in the PMOS transistor. The process flow and resulting structures for PMOS transistors and NMOS transistors can be used in various integrated circuits and devices.
    Type: Application
    Filed: August 30, 2022
    Publication date: February 29, 2024
    Inventors: Ronald Allen Weimer, Toshihiko Miyashita, Dan Mihai Mocuta, Christopher W. Petz
  • Publication number: 20240038588
    Abstract: A method of forming a microelectronic device comprises forming interlayer dielectric material over a base structure comprising semiconductive structures separated from one another by insulative structures. Sacrificial line structures separated from one another by trenches are formed over the interlayer dielectric material. The sacrificial line structures horizontally overlap some of the semiconductive structures, and the trenches horizontally overlap some other of the semiconductive structures. Plug structures are formed within horizontal areas of the trenches and extend through the interlayer dielectric material and into the some other of the semiconductive structures. The sacrificial line structures are replaced with additional trenches. Conductive contact structures are formed within horizontal areas of the additional trenches and extend through the interlayer dielectric material and into the some of the semiconductive structures.
    Type: Application
    Filed: July 27, 2022
    Publication date: February 1, 2024
    Inventors: Terrence B. McDaniel, Vinay Nair, Russell A. Benson, Christopher W. Petz, Si-Woo Lee, Silvia Borsari, Ping Chieh Chiang, Luca Fumagalli
  • Patent number: 11825662
    Abstract: A ferroelectric capacitor comprises two conductive capacitor electrodes having ferroelectric material there-between. At least one of the capacitor electrodes comprise MxSiOy, where “M” is at least one of Ru, Ti, Ta, Co, Pt, Ir, Os, Mo, V, W, Sr, Re, Rh, Pd, La, Zn, In, Sig, and Nb, Other aspects, including method, are disclosed.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: November 21, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Clement Jacob, Vassil N. Antonov, Jaydeb Goswami, Albert Liao, Christopher W. Petz, Durai Vishak Nirmal Ramaswamy
  • Patent number: 11527548
    Abstract: A semiconductor device comprises a semiconductor material extending through a stack of alternating levels of a conductive material and an insulative material, and a material comprising cerium oxide and at least another oxide adjacent to the semiconductor material. Related electronic systems and methods are also disclosed.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: December 13, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Haoyu Li, Everett A. McTeer, Christopher W. Petz, Yongjun J. Hu
  • Patent number: 11515147
    Abstract: A material deposition system comprises a dopant source containing at least one dopant precursor material, an inert gas source containing at least one noble gas, and a physical vapor deposition apparatus in selective fluid communication with the dopant source and the inert gas source. The physical vapor deposition apparatus comprises a housing structure, a target electrode, and a substrate holder. The housing structure is configured and positioned to receive at least one feed fluid stream comprising the at least one dopant precursor material and the at least one noble gas. The target electrode is within the housing structure and is in electrical communication with a signal generator. The substrate holder is within the housing structure and is spaced apart from the target electrode. A method of forming a microelectronic device, a microelectronic device, a memory device, and an electronic system are also described.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: November 29, 2022
    Assignee: MICRON TECHNOLOGY, INC.
    Inventors: Clement Jacob, Richard L. Elliott, Christopher W. Petz
  • Publication number: 20220302032
    Abstract: A microelectronic device includes a first conductive structure, a barrier structure, a conductive liner structure, and a second conductive structure. The first conductive structure is within a first filled opening in a first dielectric structure. The barrier structure is within the first filled opening in the first dielectric structure and vertically overlies the first conductive structure. The conductive liner structure is on the barrier structure and is within a second filled opening in a second dielectric structure vertically overlying the first dielectric structure. The second conductive structure vertically overlies and is horizontally surrounded by the conductive liner structure within the second filled opening in the second dielectric structure. Memory devices, electronic systems, and methods of forming microelectronic devices are also described.
    Type: Application
    Filed: June 10, 2022
    Publication date: September 22, 2022
    Inventors: Jordan D. Greenlee, Christian George Emor, Luca Fumagalli, John D. Hopkins, Rita J. Klein, Christopher W. Petz, Everett A. McTeer
  • Patent number: 11393756
    Abstract: A microelectronic device includes a first conductive structure, a barrier structure, a conductive liner structure, and a second conductive structure. The first conductive structure is within a first filled opening in a first dielectric structure. The barrier structure is within the first filled opening in the first dielectric structure and vertically overlies the first conductive structure. The conductive liner structure is on the barrier structure and is within a second filled opening in a second dielectric structure vertically overlying the first dielectric structure. The second conductive structure vertically overlies and is horizontally surrounded by the conductive liner structure within the second filled opening in the second dielectric structure. Memory devices, electronic systems, and methods of forming microelectronic devices are also described.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: July 19, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, Christian George Emor, Luca Fumagalli, John D. Hopkins, Rita J. Klein, Christopher W. Petz, Everett A. McTeer
  • Publication number: 20220208767
    Abstract: A DRAM capacitor comprising a first capacitor electrode configured as a container and comprising a doped titanium nitride material, a capacitor dielectric on the first capacitor electrode, and a second capacitor electrode on the capacitor dielectric. Methods of forming the DRAM capacitor are also disclosed, as are semiconductor devices and systems comprising such DRAM capacitors.
    Type: Application
    Filed: March 17, 2022
    Publication date: June 30, 2022
    Inventors: Matthew N. Rocklein, Paul A. Paduano, Sanket S. Kelkar, Christopher W. Petz, Zhe Song, Vassil Antonov, Qian Tao
  • Patent number: 11322502
    Abstract: An apparatus comprising a memory array comprising access lines. Each of the access lines comprises an insulating material adjacent a bottom surface and sidewalls of a base material, a first conductive material adjacent the insulating material, a second conductive material adjacent the first conductive material, and a barrier material between the first conductive material and the second conductive material. The barrier material is configured to suppress migration of reactive species from the second conductive material. Methods of forming the apparatus and electronic systems are also disclosed.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: May 3, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Dojun Kim, Christopher W. Petz, Sanket S. Kelkar, Hidekazu Nobuto
  • Patent number: 11289487
    Abstract: A DRAM capacitor comprising a first capacitor electrode configured as a container and comprising a doped titanium nitride material, a capacitor dielectric on the first capacitor electrode, and a second capacitor electrode on the capacitor dielectric. Methods of forming the DRAM capacitor are also disclosed, as are semiconductor devices and systems comprising such DRAM capacitors.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: March 29, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Matthew N. Rocklein, Paul A. Paduano, Sanket S. Kelkar, Christopher W. Petz, Zhe Song, Vassil Antonov, Qian Tao
  • Patent number: 11251261
    Abstract: Methods, apparatuses, and systems related to forming a barrier material on an electrode are described. An example method includes forming a top electrode of a storage node on a dielectric material in a semiconductor fabrication sequence and forming, in-situ in a semiconductor fabrication apparatus, a barrier material on the top electrode to reduce damage to the dielectric material when ex-situ of the semiconductor fabrication apparatus.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: February 15, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Sanket S Kelkar, An-Jen B. Cheng, Dojun Kim, Christopher W. Petz, Matthew N. Rocklein, Brenda D. Kraus
  • Publication number: 20220028968
    Abstract: Methods, apparatuses, and systems related to forming a barrier material between an electrode and a dielectric material are described. An example method includes forming a dielectric material on a bottom electrode material of a storage node in a semiconductor fabrication process. The method further includes forming a barrier material on the dielectric material to reduce oxygen vacancies in the dielectric material. The method further includes forming a top electrode on the barrier material.
    Type: Application
    Filed: October 11, 2021
    Publication date: January 27, 2022
    Inventors: Sanket S. Kelkar, Christopher W. Petz, Dojun Kim, Matthew N. Rocklein, Brenda D. Kraus
  • Publication number: 20210358919
    Abstract: Methods for forming microelectronic devices include forming a titanium nitride (TiN) material over a precursor structure. Forming the TiN material comprises repeating cycles of flowing a titanium-including gas adjacent the precursor structure; flowing a reducing gas over the precursor structure; flowing a nitrogen-including gas over the precursor structure; and, before and after flowing the nitrogen-including gas, purging gas. Related microelectronic device and related electronic systems are also described.
    Type: Application
    Filed: May 14, 2020
    Publication date: November 18, 2021
    Inventors: Dojun Kim, Sanket S. Kelkar, Christopher W. Petz, Anthony J. Kanago, Brenda D. Kraus, Soichi Sugiura
  • Publication number: 20210343732
    Abstract: A ferroelectric capacitor comprises two conductive capacitor electrodes having ferroelectric material there-between. At least one of the capacitor electrodes comprise MxSiOy, where “M” is at least one of Ru, Ti, Ta, Co, Pt, Ir, Os, Mo, V, W, Sr, Re, Rh, Pd, La, Zn, In, Sig, and Nb, Other aspects, including method, are disclosed.
    Type: Application
    Filed: July 16, 2021
    Publication date: November 4, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Clement Jacob, Vassil N. Antonov, Jaydeb Goswami, Albert Liao, Christopher W. Petz, Durai Vishak Nirmal Ramaswamy
  • Publication number: 20210327881
    Abstract: Some embodiments include an integrated assembly having capacitor-contact-regions. Metal-containing interconnects are coupled with the capacitor-contact-regions. A first insulative material is between the metal-containing interconnects. A second insulative material is over the first insulative material. A third insulative material is over the second insulative material. First capacitor electrodes extend through the second and third insulative materials and are coupled with the metal-containing interconnects. Fourth insulative material is adjacent the first capacitor electrodes. Capacitor plate electrodes are adjacent the fourth insulative material and are spaced from the first capacitor electrodes by the fourth insulative material. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: April 17, 2020
    Publication date: October 21, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Ke-Hung Chen, Christopher W. Petz, Pankaj Sharma, Yong Mo Yang
  • Patent number: 11145710
    Abstract: Methods, apparatuses, and systems related to forming a barrier material between an electrode and a dielectric material are described. An example method includes forming a dielectric material on a bottom electrode material of a storage node in a semiconductor fabrication process. The method further includes forming a barrier material on the dielectric material to reduce oxygen vacancies in the dielectric material. The method further includes forming a top electrode on the barrier material.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: October 12, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Sanket S. Kelkar, Christopher W. Petz, Dojun Kim, Matthew N. Rocklein, Brenda D. Kraus
  • Patent number: 11127745
    Abstract: A method of forming an apparatus comprises forming a first metal nitride material over an upper surface of a conductive material within an opening extending through at least one dielectric material through a non-conformal deposition process. A second metal nitride material is formed over an upper surface of the first metal nitride material and side surfaces of the at least one dielectric material partially defining boundaries of the opening through a conformal deposition process. A conductive structure is formed over surfaces of the second metal nitride material within the opening. Apparatuses and electronic systems are also described.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: September 21, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Kentaro Ishii, Yongjun J. Hu, Amirhasan Nourbakhsh, Durai Vishak Nirmal Ramaswamy, Christopher W. Petz, Luca Fumagalli
  • Publication number: 20210287990
    Abstract: A microelectronic device comprises a first conductive structure, a barrier structure, a conductive liner structure, and a second conductive structure. The first conductive structure is within a first filled opening in a first dielectric structure. The barrier structure is within the first filled opening in the first dielectric structure and vertically overlies the first conductive structure. The conductive liner structure is on the barrier structure and is within a second filled opening in a second dielectric structure vertically overlying the first dielectric structure. The second conductive structure vertically overlies and is horizontally surrounded by the conductive liner structure within the second filled opening in the second dielectric structure. Memory devices, electronic systems, and methods of forming microelectronic devices are also described.
    Type: Application
    Filed: March 16, 2020
    Publication date: September 16, 2021
    Inventors: Jordan D. Greenlee, Christian George Emor, Luca Fumagalli, John D. Hopkins, Rita J. Klein, Christopher W. Petz, Everett A. McTeer
  • Patent number: 11101274
    Abstract: A ferroelectric capacitor comprises two conductive capacitor electrodes having ferroelectric material there-between. At least one of the capacitor electrodes comprise MxSiOy, where “M” is at least one of Ru, Ti, Ta, Co, Pt, Ir. Os, Mo, V, W, Sr, Re, Rh, Pd, La, Zn, In, Sn, and Nb. Other aspects, including method, are disclosed.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: August 24, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Clement Jacob, Vassil N. Antonov, Jaydeb Goswami, Albert Liao, Christopher W. Petz, Durai Vishak Nirmal Ramaswamy