Patents by Inventor Chun-Lin Tsai

Chun-Lin Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11145713
    Abstract: Various embodiments of the present application are directed towards an integrated circuit (IC) in which a high voltage metal-oxide-semiconductor (HVMOS) device is integrated with a high voltage junction termination (HVJT) device. In some embodiments, a first drift well and a second drift well are in a substrate. The first and second drift wells border in a ring-shaped pattern and have a first doping type. A peripheral well is in the substrate and has a second doping type opposite the first doping type. The peripheral well surrounds and separates the first and second drift wells. A body well is in the substrate and has the second doping type. Further, the body well overlies the first drift well and is spaced from the peripheral well by the first drift well. A gate electrode overlies a junction between the first drift well and the body well.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: October 12, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Karthick Murukesan, Wen-Chih Chiang, Chun Lin Tsai, Ker-Hsiao Huo, Kuo-Ming Wu, Po-Chih Chen, Ru-Yi Su, Shiuan-Jeng Lin, Yi-Min Chen, Hung-Chou Lin, Yi-Cheng Chiu
  • Patent number: 11139290
    Abstract: The present disclosure relates to a semiconductor device including a first high electron mobility transistor (HEMT) device disposed within a semiconductor structure and having a first source, a first drain, and a first gate; a second HEMT device disposed within the semiconductor structure and having a second source, a second drain, and a second gate, the second source coupled to the first drain; and a diode-connected transistor device disposed within the semiconductor structure and comprising a third source, a third gate, and a third drain, the third drain coupled to the second gate.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: October 5, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Cheng Lin, Chen-Bau Wu, Chun Lin Tsai, Haw-Yun Wu
  • Publication number: 20210280689
    Abstract: A method of forming a high electron mobility transistor (HEMT) includes a first III-V compound layer and a second III-V compound layer disposed on the first III-V compound layer and is different from the first III-V compound layer in composition. A source feature and a drain feature are disposed on the second III-V compound layer. A p-type layer is disposed on a portion of the second III-V compound layer between the source feature and the drain feature. A gate electrode is disposed on the p-type layer. A capping layer is disposed on the second III-V compound layer.
    Type: Application
    Filed: May 26, 2021
    Publication date: September 9, 2021
    Inventors: Chun-Wei HSU, Jiun-Lei Jerry YU, Fu-Wei YAO, Chen-Ju YU, Fu-Chih YANG, Chun Lin TSAI
  • Publication number: 20210273065
    Abstract: In some embodiments, the present disclosure relates to a transistor device. The transistor device that includes a source contact disposed over a substrate. The source contact has a first side and an opposing second side disposed between a first end and an opposing second end. A drain contact is disposed over the substrate and is separated from the source contact along a first direction. A gate structure is disposed over the substrate between the source contact and the drain contact. The gate structure extends along the first side of the source contact facing the drain contact and also wraps around the first end and the opposing second end of the source contact.
    Type: Application
    Filed: April 30, 2020
    Publication date: September 2, 2021
    Inventors: Aurelien Gauthier Brun, Chun Lin Tsai, Jiun-Lei Jerry Yu, Po-Chih Chen, Yun-Hsiang Wang
  • Publication number: 20210265241
    Abstract: Various embodiments of the present application are directed towards an integrated circuit (IC) chip comprising a front-end-of-line (FEOL) through semiconductor-on-substrate via (TSV), as well as a method for forming the IC chip. In some embodiments, a semiconductor layer overlies a substrate. The semiconductor layer may, for example, be or comprise a group III-V semiconductor and/or some other suitable semiconductor(s). A semiconductor device is on the semiconductor layer, and a FEOL layer overlies the semiconductor device. The FEOL TSV extends through the FEOL layer and the semiconductor layer to the substrate at a periphery of the IC chip. An intermetal dielectric (IMD) layer overlies the FEOL TSV and the FEOL layer, and an alternating stack of wires and vias is in the IMD layer.
    Type: Application
    Filed: July 23, 2020
    Publication date: August 26, 2021
    Inventors: Yun-Hsiang Wang, Chun Lin Tsai, Jiun-Lei Jerry Yu, Po-Chih Chen
  • Publication number: 20210242337
    Abstract: Various embodiments of the present disclosure are directed toward an integrated chip including an undoped layer overlying a substrate. A first barrier layer overlies the undoped layer. A doped layer overlies the first barrier layer. Further, a second barrier layer overlies the first barrier layer, where the second barrier layer is laterally offset from a perimeter of the doped layer by a non-zero distance. The first and second barrier layers comprise a same III-V semiconductor material. A first atomic percentage of a first element within the first barrier layer is less than a second atomic percentage of the first element within the second barrier layer.
    Type: Application
    Filed: May 12, 2020
    Publication date: August 5, 2021
    Inventors: Yun-Hsiang Wang, Chun Lin Tsai, Jiun-Lei Jerry Yu, Po-Chih Chen, Chia-Ling Yeh, Ching Yu Chen
  • Publication number: 20210226047
    Abstract: A semiconductor structure includes: a channel layer; an active layer over the channel layer, wherein the active layer is configured to form a two-dimensional electron gas (2DEG) to be formed in the channel layer along an interface between the channel layer and the active layer; a gate electrode over a top surface of the active layer; and a source/drain electrode over the top surface of the active layer; wherein the active layer includes a first layer and a second layer sequentially disposed therein from the top surface to a bottom surface of the active layer, and the first layer possesses a higher aluminum (Al) atom concentration compared to the second layer. An HEMT structure and an associated method are also disclosed.
    Type: Application
    Filed: March 19, 2021
    Publication date: July 22, 2021
    Inventors: YAO-CHUNG CHANG, PO-CHIH CHEN, JIUN-LEI JERRY YU, CHUN LIN TSAI
  • Patent number: 11069805
    Abstract: A device includes a buried well region and a first HVW region of the first conductivity, and an insulation region over the first HVW region. A drain region of the first conductivity type is disposed on a first side of the insulation region and in a top surface region of the first HVW region. A first well region and a second well region of a second conductivity type opposite the first conductivity type are on the second side of the insulation region. A second HVW region of the first conductivity type is disposed between the first and the second well regions, wherein the second HVW region is connected to the buried well region. A source region of the first conductivity type is in a top surface region of the second HVW region, wherein the source region, the drain region, and the buried well region form a JFET.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: July 20, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jen-Hao Yeh, Chih-Chang Cheng, Ru-Yi Su, Ker Hsiao Huo, Po-Chih Chen, Fu-Chih Yang, Chun-Lin Tsai
  • Publication number: 20210175227
    Abstract: Some embodiments relate to an integrated circuit. The integrated circuit includes a ring-shaped drain region having an inner edge and an outer edge. A channel region surrounds the ring-shaped drain region. A source region surrounds the channel region. The channel region separates the drain region from the source region. A gate electrode is arranged over the channel region and is separated from the channel region by a gate dielectric. An inner edge of the gate electrode is proximate to the drain region. A resistor structure is arranged over and spaced apart from an upper surface of the substrate. The resistor structure has a first end and a second end which are connected by a curved or polygonal path of resistive material. The first end is coupled to the ring-shaped drain. The resistor has an outer perimeter that is surrounded by the inner edge of the ring-shaped drain region.
    Type: Application
    Filed: January 22, 2021
    Publication date: June 10, 2021
    Inventors: Ker Hsiao Huo, Fu-Chih Yang, Chun Lin Tsai, Yi-Min Chen, Chih-Yuan Chan
  • Publication number: 20210159334
    Abstract: A high-voltage semiconductor device structure is provided. The high-voltage semiconductor device structure includes a semiconductor substrate, a source ring in the semiconductor substrate, and a drain region in the semiconductor substrate. The high-voltage semiconductor device structure also includes a doped ring surrounding sides and a bottom of the source ring and a well region surrounding sides and bottoms of the drain region and the doped ring. The well region has a conductivity type opposite to that of the doped ring. The high-voltage semiconductor device structure further includes a conductor electrically connected to the drain region and extending over and across a periphery of the well region. In addition, the high-voltage semiconductor device structure includes a shielding element ring between the conductor and the semiconductor substrate. The shielding element ring extends over and across the periphery of the well region.
    Type: Application
    Filed: January 6, 2021
    Publication date: May 27, 2021
    Inventors: Hung-Chou Lin, Yi-Cheng Chiu, Karthick Murukesan, Yi-Min Chen, Shiuan-Jeng Lin, Wen-Chih Chiang, Chen-Chien Chang, Chih-Yuan Chan, Kuo-Ming Wu, Chun Lin Tsai
  • Publication number: 20210098615
    Abstract: In some embodiments, the present disclosure relates to an integrated transistor device, including a first barrier layer arranged over a substrate. Further, an undoped layer may be arranged over the first barrier layer and have a n-channel device region laterally next to a p-channel device region. The n-channel device region of the undoped layer has a topmost surface that is above a topmost surface of the p-channel device region of the undoped layer. The integrated transistor device may further comprise a second barrier layer over the n-channel device region of the undoped layer. A first gate electrode is arranged over the second barrier layer, and a second gate electrode is arranged over the p-channel device region of the undoped layer.
    Type: Application
    Filed: October 1, 2019
    Publication date: April 1, 2021
    Inventors: Man-Ho Kwan, Fu-Wei Yao, Chun Lin Tsai, Jiun-Lei Jerry Yu, Ting-Fu Chang
  • Patent number: 10964781
    Abstract: The present disclosure, in some embodiments, relates to a high voltage resistor device. The device includes a buried well region disposed within a substrate and having a first doping type. A drift region is disposed within the substrate and contacts the buried well region. The drift region has the first doping type. A body region is disposed within the substrate and has a second doping type. The body region laterally contacts the drift region and vertically contacts the buried well region. An isolation structure is over the drift region and a resistor structure is over the isolation structure.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: March 30, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yi-Cheng Chiu, Wen-Chih Chiang, Chun Lin Tsai, Kuo-Ming Wu, Shiuan-Jeng Lin, Yi-Min Chen, Hung-Chou Lin, Karthick Murukesan
  • Patent number: 10964804
    Abstract: A semiconductor structure includes: a channel layer; an active layer over the channel layer, wherein the active layer is configured to form a two-dimensional electron gas (2DEG) to be formed in the channel layer along an interface between the channel layer and the active layer; a gate electrode over a top surface of the active layer; and a source/drain electrode over the top surface of the active layer; wherein the active layer includes a first layer and a second layer sequentially disposed therein from the top surface to a bottom surface of the active layer, and the first layer possesses a higher aluminum (Al) atom concentration compared to the second layer. An HEMT structure and an associated method are also disclosed.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: March 30, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yao-Chung Chang, Po-Chih Chen, Jiun-Lei Jerry Yu, Chun Lin Tsai
  • Publication number: 20210066483
    Abstract: In some embodiments, the present disclosure relates to a high voltage device that includes a substrate comprising a first semiconductor material. A channel layer that comprises a second semiconductor material is arranged over the substrate. An active layer that comprises a third semiconductor material is arranged over the channel layer. Over the active layer is a source contact spaced apart from a drain contact. A gate structure is arranged laterally between the source and drain contacts and over the active layer to define a high electron mobility transistor (HEMT) device. Between the gate structure and the source contact is a cap structure, which is coupled to the source contact and laterally spaced from the gate structure. The cap structure and a gate electrode of the gate structure comprise a same material.
    Type: Application
    Filed: September 3, 2019
    Publication date: March 4, 2021
    Inventors: Ming-Cheng Lin, Chen-Bau Wu, Chun Lin Tsai, Haw-Yun Wu, Liang-Yu Su, Yun-Hsiang Wang
  • Patent number: 10924107
    Abstract: Devices are described herein for a low static current semiconductor device. A semiconductor device includes a power transistor and a driving circuit coupled to and configured to drive the power transistor. The driving circuit includes a first stage having an enhancement-mode high-electron-mobility transistor (HEMT) and a second stage that is coupled between the first stage and the power transistor and that includes a pair of enhancement-mode HEMTs.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: February 16, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chan-Hong Chern, Chu Fu Chen, Chun Lin Tsai, Mark Chen, King-Yuen Wong, Ming-Cheng Lin, Tysh-Bin Liu
  • Patent number: 10923467
    Abstract: Some embodiments relate to an integrated circuit. The integrated circuit includes a ring-shaped drain region having an inner edge and an outer edge. A channel region surrounds the ring-shaped drain region. A source region surrounds the channel region. The channel region separates the drain region from the source region. A gate electrode is arranged over the channel region and is separated from the channel region by a gate dielectric. An inner edge of the gate electrode is proximate to the drain region. A resistor structure is arranged over and spaced apart from an upper surface of the substrate. The resistor structure has a first end and a second end which are connected by a curved or polygonal path of resistive material. The first end is coupled to the ring-shaped drain. The resistor has an outer perimeter that is surrounded by the inner edge of the ring-shaped drain region.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: February 16, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ker Hsiao Huo, Fu-Chih Yang, Chun Lin Tsai, Yi-Min Chen, Chih-Yuan Chan
  • Publication number: 20210043726
    Abstract: The present disclosure relates to an integrated chip. The integrated chip includes a first III-V semiconductor material over a substrate and a second III-V semiconductor material over the first III-V semiconductor material. The second III-V semiconductor material is a different material than the first III-V semiconductor material. A doped region has a horizontally extending segment and one or more vertically extending segments protruding vertically outward from the horizontally extending segment. The horizontally extending segment is arranged below the first III-V semiconductor material.
    Type: Application
    Filed: October 27, 2020
    Publication date: February 11, 2021
    Inventors: Fu-Wei Yao, Chun Lin Tsai, Jiun-Lei Jerry Yu, Man-Ho Kwan
  • Patent number: 10892360
    Abstract: A high-voltage semiconductor device structure is provided. The high-voltage semiconductor device structure includes a semiconductor substrate, a source ring in the semiconductor substrate, and a drain region in the semiconductor substrate. The high-voltage semiconductor device structure also includes a doped ring surrounding sides and a bottom of the source ring and a well region surrounding sides and bottoms of the drain region and the doped ring. The well region has a conductivity type opposite to that of the doped ring. The high-voltage semiconductor device structure further includes a conductor electrically connected to the drain region and extending over and across a periphery of the well region. In addition, the high-voltage semiconductor device structure includes a shielding element ring between the conductor and the semiconductor substrate. The shielding element ring extends over and across the periphery of the well region.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: January 12, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hung-Chou Lin, Yi-Cheng Chiu, Karthick Murukesan, Yi-Min Chen, Shiuan-Jeng Lin, Wen-Chih Chiang, Chen-Chien Chang, Chih-Yuan Chan, Kuo-Ming Wu, Chun-Lin Tsai
  • Patent number: 10879236
    Abstract: Various embodiments of the present application are directed towards an integrated circuit (IC) in which a bootstrap metal-oxide-semiconductor (MOS) device is integrated with a high voltage metal-oxide-semiconductor (HVMOS) device and a high voltage junction termination (HVJT) device. In some embodiments, a drift well is in the semiconductor substrate. The drift well has a first doping type and has a ring-shaped top layout. A first switching device is on the drift well. A second switching device is on the semiconductor substrate, at an indent in a sidewall the drift well. A peripheral well is in the semiconductor substrate and has a second doping type opposite the first doping type. The peripheral well surrounds the drift well, the first switching device, and the second switching device, and further separates the second switching device from the drift well and the first switching device.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: December 29, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Karthick Murukesan, Wen-Chih Chiang, Chiu-Hua Chung, Chun Lin Tsai, Kuo-Ming Wu, Shiuan-Jeng Lin, Tien Sheng Lin, Yi-Min Chen, Hung-Chou Lin, Yi-Cheng Chiu
  • Patent number: 10867990
    Abstract: Some embodiments relate to a method. In the method, a semiconductor substrate is provided. Dopant impurities of a first dopant conductivity are implanted into the semiconductor substrate to form a body region. A gate dielectric and a field oxide region are formed over the semiconductor substrate. A polysilicon layer is formed over the gate dielectric and field oxide region. The polysilicon layer is patterned to concurrently form a conductive gate electrode over the gate dielectric and a resistor structure over the field oxide region. The resistor structure is perimeterally bounded by an inner edge of the conductive gate electrode. Dopant impurities of a second dopant conductivity, which is opposite the first dopant conductivity, are implanted into the semiconductor substrate to form a source region and a drain region. The drain region is perimeterally bounded by the inner edge of the conductive gate electrode.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ker Hsiao Huo, Fu-Chih Yang, Chun Lin Tsai, Yi-Min Chen, Chih-Yuan Chan