Patents by Inventor Chung-Yuen Hui

Chung-Yuen Hui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12023961
    Abstract: An article of manufacture comprising: (a) a body at least a portion of which is a multi-phase material (MPM) defining a traction surface; (b) the MPM comprising at least first and second zones comprising first and second materials, M1, M2, respectively, at or near the traction surface, the M1 and M2 having first and second Young moduli respectively, the first and second moduli differing by at least a factor of 3; and (c) wherein each of the second zones has a center, and wherein the second zones have a center-to-center radial distribution function having a peak at between 10 ?m and 10 mm.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: July 2, 2024
    Assignees: COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN, LEHIGH UNIVERSITY, CORNELL UNIVERSITY
    Inventors: Nichole Moyle, Florian Bremond, Chung Yuen Hui, Haibin Wu, Anand Jagota, Constantine Khripin
  • Publication number: 20220347963
    Abstract: Resilient members having near-surface architectures including microstructures for controlling friction are provided. A film-terminated array of fibrils having a sharp film/fibril juncture exhibits an unexpectedly large enhancement of adhesion, static friction and sliding friction. The enhancement is provided against rough indenters. A film-terminated array of elongated ridges and valleys unexpectedly exhibits low adhesion, and an unexpectedly large enhancement of sliding friction. The film-terminated ridge/valley design provides an anisotropic structure with direction-dependent frictional properties. The increase in sliding friction force varies as a function of interfibrillar spacing, and corresponds to a mode in which buckling of the terminal film occurs. The near surface architectures may be designed with varying scales and varying parameters to provide performance characteristics tailored to various applications.
    Type: Application
    Filed: May 13, 2022
    Publication date: November 3, 2022
    Applicant: Lehigh University
    Inventors: Anand Jagota, Ying Bai, Zhenping He, Chung-Yuen Hui, Benjamin Levrard
  • Publication number: 20210283955
    Abstract: An article of manufacture comprising: (a) a body at least a portion of which is a multi-phase material (MPM) defining a traction surface; (b) the MPM comprising at least first and second zones comprising first and second materials, M1, M2, respectively, at or near the traction surface, the M1 and M2 having first and second Young moduli respectively, the first and second moduli differing by at least a factor of 3; and (c) wherein each of the second zones has a center, and wherein the second zones have a center-to-center radial distribution function having a peak at between 10 ?m and 10 mm.
    Type: Application
    Filed: May 28, 2021
    Publication date: September 16, 2021
    Inventors: Nichole MOYLE, Florian BREMOND, Chung Yuen HUI, Haibin WU, Anand JAGOTA, Constantine KHRIPIN
  • Publication number: 20200130319
    Abstract: Resilient members having near-surface architectures including microstructures for controlling friction are provided. A film-terminated array of fibrils having a sharp film/fibril juncture exhibits an unexpectedly large enhancement of adhesion, static friction and sliding friction. The enhancement is provided against so rough indenters. A film-terminated array of elongated ridges and valleys unexpectedly exhibits low adhesion, and an unexpectedly large enhancement of sliding friction. The film-terminated ridge/valley design provides an anisotropic structure with direction-dependent frictional properties. The increase in sliding friction force varies as a function of interfibrillar spacing, and corresponds to a mode is in which buckling of the terminal film occurs. The near surface architectures may be designed with varying scales and varying parameters to provide performance characteristics tailored to various applications.
    Type: Application
    Filed: August 9, 2019
    Publication date: April 30, 2020
    Applicants: Lehigh University, COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN
    Inventors: Anand Jagota, Ying Bai, Zhenping He, Chung-Yuen Hui, Benjamin Levrard
  • Publication number: 20180043652
    Abstract: Resilient members having near-surface architectures including microstructures for controlling friction are provided. A film-terminated array of fibrils having a sharp film/fibril juncture exhibits an unexpectedly large enhancement of adhesion, static friction and sliding friction. The enhancement is provided against rough indenters. A film-terminated array of elongated ridges and valleys unexpectedly exhibits low adhesion, and an unexpectedly large enhancement of sliding friction. The film-terminated ridge/valley design provides an anisotropic structure with direction-dependent frictional properties. The increase in sliding friction force varies as a function of interfibrillar spacing, and corresponds to a mode in which buckling of the terminal film occurs. The near surface architectures may be designed with varying scales and varying parameters to provide performance characteristics tailored to various applications.
    Type: Application
    Filed: February 17, 2016
    Publication date: February 15, 2018
    Applicants: Lehigh University, Compagnie Generale Des Etablissements Michelin
    Inventors: Anand Jagota, Ying Bai, Zhenping He, Chung-Yuen Hui, Benjamin Levrard