Patents by Inventor Chyu-Jiuh Torng

Chyu-Jiuh Torng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8933542
    Abstract: A thin-film deposition, such as an MTJ (magnetic tunneling junction) layer, on a wafer-scale CMOS substrate, is segmented by walls or trenches and not affected by thin-film stresses due to wafer warpage or other subsequent annealing processes. An interface layer on the CMOS substrate is patterned by either undercut trenches extending into its upper surface or by T-shaped walls that extend along its upper surface. The thin-film is deposited continuously over the patterned surface, whereupon either the trenches or walls segment the deposition and serve as stress-relief mechanisms to eliminate adverse effects of processing as stresses such as those caused by wafer warpage.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: January 13, 2015
    Assignee: Headway Technologies, Inc.
    Inventors: Tom Zhong, Kenlin Huang, Chyu-Jiuh Torng
  • Publication number: 20140349414
    Abstract: A thin-film deposition, such as an MTJ (magnetic tunneling junction) layer, on a wafer-scale CMOS substrate, is segmented by walls or trenches and not affected by thin-film stresses due to wafer warpage or other subsequent annealing processes. An interface layer on the CMOS substrate is patterned by either undercut trenches extending into its upper surface or by T-shaped walls that extend along its upper surface. The thin-film is deposited continuously over the patterned surface, whereupon either the trenches or walls segment the deposition and serve as stress-relief mechanisms to eliminate adverse effects of processing as stresses such as those caused by wafer warpage.
    Type: Application
    Filed: August 7, 2014
    Publication date: November 27, 2014
    Inventors: Tom Zhong, Kenlin Huang, Chyu-Jiuh Torng
  • Publication number: 20140306305
    Abstract: A MTJ in an MRAM array is disclosed with a composite free layer having a lower crystalline layer contacting a tunnel barrier and an upper amorphous NiFeX layer for improved bit switching performance. The crystalline layer is Fe, Ni, or FeB with a thickness of at least 6 Angstroms which affords a high magnetoresistive ratio. The X element in the NiFeX layer is Mg, Hf, Zr, Nb, or Ta with a content of 5 to 30 atomic %. NiFeX thickness is preferably between 20 to 40 Angstroms to substantially reduce bit line switching current and number of shorted bits. In an alternative embodiment, the crystalline layer may be a Fe/NiFe bilayer. Optionally, the amorphous layer may have a NiFeM1/NiFeM2 configuration where M1 and M2 are Mg, Hf, Zr, Nb, or Ta, and M1 is unequal to M2. Annealing at 300° C. to 360° C. provides a high magnetoresistive ratio of about 150%.
    Type: Application
    Filed: June 26, 2014
    Publication date: October 16, 2014
    Inventors: Wei Cao, Cheng T. Horng, Witold Kula, Chyu Jiuh Torng
  • Patent number: 8803293
    Abstract: A method of forming a thin-film deposition, such as an MTJ (magnetic tunneling junction) layer, on a wafer-scale CMOS substrate so that the thin-film deposition is segmented by walls or trenches and not affected by thin-film stresses due to wafer warpage or other subsequent annealing processes. An interface layer is formed on the CMOS substrate and is patterned by either forming undercut trenches extending into its upper surface or by fabricating T-shaped walls that extend along its upper surface. The thin-film is deposited continuously over the patterned surface, whereupon either the trenches or walls segment the deposition and serve as stress-relief mechanisms to eliminate adverse effects of processing as stresses such as those caused by wafer warpage.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: August 12, 2014
    Assignee: Headway Technologies, Inc.
    Inventors: Tom Zhong, Kenlin Huang, Chyu-Jiuh Torng
  • Patent number: 8786036
    Abstract: A MTJ in an MRAM array is disclosed with a composite free layer having a lower crystalline layer contacting a tunnel barrier and an upper amorphous NiFeX layer for improved bit switching performance. The crystalline layer is Fe, Ni, or FEB with a thickness of at least 6 Angstroms which affords a high magnetoresistive ratio. The X element in the NiFeX layer is Mg, Hf, Zr, Nb, or Ta with a content of 5 to 30 atomic % NiFeX thickness is preferably between 20 to 40 Angstroms to substantially reduce bit line switching current and number of shorted bits. In an alternative embodiments, the crystalline layer may be a Fe/NiFe bilayer. Optionally, the amorphous layer may have a NiFeM1/NiFeM2 configuration where M1 and M2 are Mg, Hf, Zr, Nb, or Ta, and M1 is unequal to M2. Annealing at 300° C. to 360° C. provides a high magnetoresistive ratio of about 150%.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: July 22, 2014
    Assignee: Headway Technologies, Inc.
    Inventors: Wei Cao, Cheng T. Horng, Witold Kula, Chyu Jiuh Torng
  • Patent number: 8772051
    Abstract: A wafer has a memory area and a logic area and a topmost metal contact layer on the surface covered with dielectric and etch stop layers. In the memory area, vias are opened through the dielectric and etch stop layers to topmost metal contact layer. In the logic area, evenly distributed dummy fill patterns are opened through a portion of the dielectric and etch stop layers. These are filled with a metal layer and planarized, forming a flat wafer surface. MTJ elements in the memory area and dummy elements in the logic area are formed on the flat surface. The dummy MTJ elements and fill patterns are etched away in the logic area. Metal connections are formed to the topmost metal contact layer in the logic area and top lead connections to MTJ elements are formed in the memory area.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: July 8, 2014
    Assignee: Headway Technologies, Inc.
    Inventors: Tom Zhong, Kenlin Huang, Chyu-Jiuh Torng
  • Patent number: 8736004
    Abstract: Reading margin is improved in a MTJ designed for MRAM applications by employing a pinned layer with an AP2/Ru/AP1 configuration wherein the AP1 layer is a CoFeB/CoFe composite and by forming a MgO tunnel barrier adjacent to the CoFe AP1 layer by a sequence that involves depositing and oxidizing a first Mg layer with a radical oxidation (ROX) process, depositing and oxidizing a second Mg layer with a ROX method, and depositing a third Mg layer on the oxidized second Mg layer. The third Mg layer becomes oxidized during a subsequent anneal. MTJ performance may be further improved by selecting a composite free layer having a Fe/NiFeHf or CoFe/Fe/NiFeHf configuration where the NiFeHf layer adjoins a capping layer in a bottom spin valve configuration. As a result, read margin is optimized simultaneously with improved MR ratio, a reduction in bit line switching current, and a lower number of shorted bits.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: May 27, 2014
    Assignee: Headway Technologies, Inc.
    Inventors: Wei Cao, Witold Kula, Chyu-Jiuh Torng
  • Patent number: 8728825
    Abstract: A GMR sensor stripe provides a sensitive mechanism for detecting the presence of magnetized particles bonded to biological molecules that are affixed to a substrate. The adverse effect of hysteresis on the maintenance of a stable bias point for the magnetic moment of the sensor stripe free layer is eliminated by a combination of biasing the sensor stripe along its longitudinal direction rather than the usual transverse direction and by using the overcoat stress and magnetostriction of magnetic layers to create a compensatory transverse magnetic anisotropy. By connecting the stripes in an array and making the spaces between the stripes narrower than the dimension of the magnetized particle and by making the width of the stripes equal to the dimension of the particle, the sensitivity of the sensor array is enhanced.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: May 20, 2014
    Assignee: Headway Technologies, Inc.
    Inventors: Po-Kang Wang, Xizeng Shi, Chyu-Jiuh Torng
  • Patent number: 8722543
    Abstract: A composite hard mask is disclosed that prevents build up of metal etch residue in a MRAM device during etch processes that define an MTJ shape. As a result, MTJ shape integrity is substantially improved. The hard mask has a lower non-magnetic spacer, a middle conductive layer, and an upper sacrificial dielectric layer. The non-magnetic spacer serves as an etch stop during a pattern transfer with fluorocarbon plasma through the conductive layer. A photoresist pattern is transferred through the dielectric layer with a first fluorocarbon etch. Then the photoresist is removed and a second fluorocarbon etch transfers the pattern through the conductive layer. The dielectric layer protects the top surface of the conductive layer during the second fluorocarbon etch and during a substantial portion of a third RIE step with a gas comprised of C, H, and O that transfers the pattern through the underlying MTJ layers.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: May 13, 2014
    Assignee: Headway Technologies, Inc.
    Inventors: Rodolfo Belen, Rongfu Xiao, Tom Zhong, Witold Kula, Chyu-Jiuh Torng
  • Publication number: 20140061827
    Abstract: A magnetic thin film deposition is patterned and protected from oxidation during subsequent processes, such as bit line formation, by an oxidation-prevention encapsulation layer of SiN. The SiN layer is then itself protected during the processing by a metal overlayer, preferably of Ta, Al, TiN, TaN or W. A sequence of low pressure plasma etches, using Oxygen, Cl2, BCl3 and C2H4 chemistries provide selectivity of the metal overlayer to various oxide layers and to the photo-resist hard masks used in patterning and metal layer and thereby allow the formation of bit lines while maintaining the integrity of the SiN layer.
    Type: Application
    Filed: August 29, 2012
    Publication date: March 6, 2014
    Applicant: HEADWAY TECHNOLOGIES, INC.
    Inventors: Kenlin Huang, Yuan-Tung Chin, Tom Zhong, Chyu-Jiuh Torng
  • Patent number: 8636911
    Abstract: Two methods of fabricating a MEMS scanning mirror having a tunable resonance frequency are described. The resonance frequency of the mirror is set to a particular value by mass removal from the backside of the mirror during fabrication.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: January 28, 2014
    Assignees: MagIC Technologies, Inc., Advanced Numicro Systems, Inc.
    Inventors: Jun Chen, Guomin Mao, Tom Zhong, Wei Cao, Yee-Chung Fu, Chyu-Jiuh Torng
  • Publication number: 20130299823
    Abstract: Reading margin is improved in a MTJ designed for MRAM applications by employing a pinned layer with an AP2/Ru/AP1 configuration wherein the AP1 layer is a CoFeB/CoFe composite and by forming a MgO tunnel barrier adjacent to the CoFe AP1 layer by a sequence that involves depositing and oxidizing a first Mg layer with a radical oxidation (ROX) process, depositing and oxidizing a second Mg layer with a ROX method, and depositing a third Mg layer on the oxidized second Mg layer. The third Mg layer becomes oxidized during a subsequent anneal. MTJ performance may be further improved by selecting a composite free layer having a Fe/NiFeHf or CoFe/Fe/NiFeHf configuration where the NiFeHf layer adjoins a capping layer in a bottom spin valve configuration. As a result, read margin is optimized simultaneously with improved MR ratio, a reduction in bit line switching current, and a lower number of shorted bits.
    Type: Application
    Filed: July 15, 2013
    Publication date: November 14, 2013
    Inventors: Wei Cao, Witold Kula, Chyu-Jiuh Torng
  • Publication number: 20130302912
    Abstract: A method of forming a thin-film deposition, such as an MTJ (magnetic tunneling junction) layer, on a wafer-scale CMOS substrate so that the thin-film deposition is segmented by walls or trenches and not affected by thin-film stresses due to wafer warpage or other subsequent annealing processes. An interface layer is formed on the CMOS substrate and is patterned by either forming undercut trenches extending into its upper surface or by fabricating T-shaped walls that extend along its upper surface. The thin-film is deposited continuously over the patterned surface, whereupon either the trenches or walls segment the deposition and serve as stress-relief mechanisms to eliminate adverse effects of processing as stresses such as those caused by wafer warpage.
    Type: Application
    Filed: May 11, 2012
    Publication date: November 14, 2013
    Applicant: HEADWAY TECHNOLOGIES, INC.
    Inventors: Tom Zhong, Kenlin Huang, Chyu-Jiuh Torng
  • Patent number: 8492169
    Abstract: Reading margin is improved in a MTJ designed for MRAM applications by employing a pinned layer with an AP2/Ru/AP1 configuration wherein the AP1 layer is a CoFeB/CoFe composite and by forming a MgO tunnel barrier adjacent to the CoFe AP1 layer by a sequence that involves depositing and oxidizing a first Mg layer with a radical oxidation (ROX) process, depositing and oxidizing a second Mg layer with a ROX method, and depositing a third Mg layer on the oxidized second Mg layer. The third Mg layer becomes oxidized during a subsequent anneal. MTJ performance may be further improved by selecting a composite free layer having a Fe/NiFeHf or CoFe/Fe/NiFeHf configuration where the NiFeHf layer adjoins a capping layer in a bottom spin valve configuration. As a result, read margin is optimized simultaneously with improved MR ratio, a reduction in bit line switching current, and a lower number of shorted bits.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: July 23, 2013
    Assignee: MagIC Technologies, Inc.
    Inventors: Wei Cao, Witold Kula, Chyu-Jiuh Torng
  • Patent number: 8484830
    Abstract: A CPP-GMR spin valve having a CoFe/NiFe composite free layer is disclosed in which Fe content of the CoFe layer ranges from 20 to 70 atomic % and Ni content in the NiFe layer varies, from 85 to 100 atomic % to maintain low Hc and ?s values. A small positive magnetostriction value in a Co75Fe25 layer is used to offset a negative magnetostriction value in a Ni90Fe10layer. The CoFe layer is deposited on a sensor stack in which a seed layer, AFM layer, pinned layer, and non-magnetic spacer layer are sequentially formed on a substrate. After a NiFe layer and capping layer are sequentially deposited on the CoFe layer, the sensor stack is patterned to give a sensor element with top and bottom surfaces and a sidewall connecting the top and bottom surfaces. Thereafter, a dielectric layer is formed adjacent to the sidewalls.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: July 16, 2013
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Min Li, Yu-Hsia Chen, Chyu-Jiuh Torng
  • Patent number: 8450119
    Abstract: An MTJ MRAM cell is formed by using a reactive ion etch (RIE) to pattern an MTJ stack on which there has been formed a bilayer Ta/TaN hard mask. The hard mask is formed by patterning a masking layer that has been formed by depositing a layer of TaN over a layer of Ta on the MTJ stack. After the stack is patterned, the TaN layer serves at least two advantageous purposes: 1) it protects the Ta layer from oxidation during the etching of the stack and 2) it serves as a surface having excellent adhesion properties for a subsequently deposited dielectric layer.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: May 28, 2013
    Assignee: MagIC Technologies, Inc.
    Inventors: Chyu-Jiuh Torng, Wei Cao, Terry Ko
  • Patent number: 8436437
    Abstract: A STT-MTJ MRAM cell that utilizes transfer of spin angular momentum as a mechanism for changing the magnetic moment direction of a free layer includes an IrMn pinning layer, a SyAP pinned layer, a naturally oxidized, crystalline MgO tunneling barrier layer that is formed on an Ar-ion plasma smoothed surface of the pinned layer and a free layer that comprises an amorphous layer of Co60Fe20B20 of approximately 20 angstroms thickness or an amorphous ferromagnetic layer of Co40Fe40B20 of approximately 15 angstroms thickness formed between two crystalline layers of Fe of 3 and 6 angstroms thickness respectively. The free layer is characterized by a low Gilbert damping factor and by very strong polarizing action on conduction electrons. The resulting cell has a low critical current, a high dR/R and a plurality of such cells will exhibit a low variation of both resistance and pinned layer magnetization angular dispersion.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: May 7, 2013
    Assignee: MagIC Technologies, Inc.
    Inventors: Cheng T. Horng, Ru-Ying Tong, Chyu-Jiuh Torng, Witold Kula
  • Publication number: 20130043471
    Abstract: Reading margin is improved in a MTJ designed for MRAM applications by employing a pinned layer with an AP2/Ru/AP1 configuration wherein the AP1 layer is a CoFeB/CoFe composite and by forming a MgO tunnel barrier adjacent to the CoFe AP1 layer by a sequence that involves depositing and oxidizing a first Mg layer with a radical oxidation (ROX) process, depositing and oxidizing a second Mg layer with a ROX method, and depositing a third Mg layer on the oxidized second Mg layer. The third Mg layer becomes oxidized during a subsequent anneal. MTJ performance may be further improved by selecting a composite free layer having a Fe/NiFeHf or CoFe/Fe/NiFeHf configuration where the NiFeHf layer adjoins a capping layer in a bottom spin valve configuration. As a result, read margin is optimized simultaneously with improved MR ratio, a reduction in bit line switching current, and a lower number of shorted bits.
    Type: Application
    Filed: August 15, 2011
    Publication date: February 21, 2013
    Inventors: Wei Cao, Witold Kula, Chyu-Jiuh Torng
  • Patent number: 8372661
    Abstract: A STT-RAM MTJ that minimizes spin-transfer magnetization switching current (Jc) is disclosed. The MTJ has a MgO tunnel barrier layer formed with a natural oxidation process to achieve a low RA (10 ohm-um2) and a Fe or Fe/CoFeB/Fe free layer which provides a lower intrinsic damping constant than a CoFeB free layer. A Fe, FeB, or Fe/CoFeB/Fe free layer when formed with a MgO tunnel barrier (radical oxidation process) and a CoFeB AP1 pinned layer in a MRAM MTJ stack annealed at 360° C. provides a high dR/R (TMR)>100% and a substantial improvement in read margin with a TMR/Rp_cov=20. High speed measurement of 100 nm×200 nm oval STT-RAM MTJs has shown a Jc0 for switching a Fe free layer is one half that for switching an amorphous CO40Fe40B20 free layer. A Fe/CoFeB/Fe free layer configuration allows the Hc value to be increased for STT-RAM applications.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: February 12, 2013
    Assignee: MagIC Technologies, Inc.
    Inventors: Cheng T. Horng, Ru-Ying Tong, Chyu-Jiuh Torng, Witold Kula
  • Patent number: 8324698
    Abstract: A STT-MRAM integration scheme is disclosed wherein the connection between a MTJ and CMOS metal is simplified by forming an intermediate via contact (VAC) on a CMOS landing pad, a metal (VAM) pad that contacts and covers the VAC, and a MTJ on the VAM. A dual damascene process is performed to connect BIT line metal to CMOS landing pads through VAC/VAM/MTJ stacks in a device region, and to connect BIT line connection pads to CMOS connection pads through BIT connection vias outside the device region. The VAM pad is a single layer or composite made of Ta, TaN, or other conductors which serves as a diffusion barrier, has a highly smooth surface for MTJ formation, and provides excellent selectivity with refill dielectric materials during a chemical mechanical polish process. Each VAC is from 500 to 3000 Angstroms thick to minimize additional circuit resistance and minimize etch burden.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: December 4, 2012
    Assignee: MagIC Technologies, Inc.
    Inventors: Tom Zhong, Chyu-Jiuh Torng, Rongfu Xiao, Adam Zhong, Wai-Ming Johnson Kan, Daniel Liu