Patents by Inventor Clement H. Wann

Clement H. Wann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8334570
    Abstract: A CMOS FinFET semiconductor device provides an NMOS FinFET device that includes a compressive stress metal gate layer over semiconductor fins and a PMOS FinFET device that includes a tensile stress metal gate layer over semiconductor fins. A process for forming the same includes a selective annealing process that selectively converts a compressive metal gate film formed over the PMOS device to the tensile stress metal gate film.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: December 18, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jeff J. Xu, Clement H. Wann, Chi Cheh Yeh, Chi-Sheng Chang
  • Patent number: 8039331
    Abstract: An opto-thermal annealing method for forming a field effect transistor uses a reflective metal gate so that electrical properties of the metal gate and also interface between the metal gate and a gate dielectric are not compromised when opto-thermal annealing a source/drain region adjacent the metal gate. Another opto-thermal annealing method may be used for simultaneously opto-thermally annealing: (1) a silicon layer and a silicide forming metal layer to form a fully silicided gate; and (2) a source/drain region to form an annealed source/drain region. An additional opto-thermal annealing method may use a thermal insulator layer in conjunction with a thermal absorber layer to selectively opto-thermally anneal a silicon layer and a silicide forming metal layer to form a fully silicide gate.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: October 18, 2011
    Assignee: International Business Machines Corporation
    Inventors: Scott D. Allen, Cyril Cabral, Jr., Kevin K. Dezfulian, Sunfei Fang, Brian J. Greene, Rajarao Jammy, Christian Lavoie, Zhijiong Luo, Hung Ng, Chun-Yung Sung, Clement H. Wann, Huilong Zhu
  • Publication number: 20110169085
    Abstract: A CMOS FinFET semiconductor device provides an NMOS FinFET device that includes a compressive stress metal gate layer over semiconductor fins and a PMOS FinFET device that includes a tensile stress metal gate layer over semiconductor fins. A process for forming the same includes a selective annealing process that selectively converts a compressive metal gate film formed over the PMOS device to the tensile stress metal gate film.
    Type: Application
    Filed: March 4, 2011
    Publication date: July 14, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jeff J. Xu, Clement H. Wann, Chi Chieh Yeh, Chi-Sheng Chang
  • Patent number: 7915112
    Abstract: A CMOS FinFET semiconductor device provides an NMOS FinFET device that includes a compressive stress metal gate layer over semiconductor fins and a PMOS FinFET device that includes a tensile stress metal gate layer over semiconductor fins. A process for forming the same includes a selective annealing process that selectively converts a compressive metal gate film formed over the PMOS device to the tensile stress metal gate film.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: March 29, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jeff J. Xu, Clement H. Wann, Chi Chieh Yeh, Chi-Sheng Chang
  • Patent number: 7791109
    Abstract: A local interconnect is formed with a gate conductor line that has an exposed sidewall on an active area of a semiconductor substrate. The exposes sidewall comprises a silicon containing material that may form a silicide alloy upon silicidation. During a silicidation process, a gate conductor sidewall silicide alloy forms on the exposed sidewall of the gate conductor line and an active area silicide is formed on the active area. The two silicides are joined to provide an electrical connection between the active area and the gate conductor line. Multiple sidewalls may be exposed on the gate conductor line to make multiple connections to different active area silicides.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: September 7, 2010
    Assignee: International Business Machines Corporation
    Inventors: Clement H. Wann, Haining S. Yang
  • Patent number: 7785999
    Abstract: An advanced gate structure that includes a fully silicided metal gate and silicided source and drain regions in which the fully silicided metal gate has a thickness that is greater than the thickness of the silicided source/drain regions is provided. A method of forming the advanced gate structure is also provided in which the silicided source and drain regions are formed prior to formation of the silicided metal gate region.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: August 31, 2010
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Chester T. Dziobkowski, Sunfei Fang, Evgeni Gousev, Rajarao Jammy, Vijay Narayanan, Vamsi Paruchuri, Ghavam G. Shahidi, Michelle L. Steen, Clement H. Wann
  • Publication number: 20100072553
    Abstract: A CMOS FinFET semiconductor device provides an NMOS FinFET device that includes a compressive stress metal gate layer over semiconductor fins and a PMOS FinFET device that includes a tensile stress metal gate layer over semiconductor fins. A process for forming the same includes a selective annealing process that selectively converts a compressive metal gate film formed over the PMOS device to the tensile stress metal gate film.
    Type: Application
    Filed: September 23, 2008
    Publication date: March 25, 2010
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jeff J. XU, Clement H. Wann, Chih Chieh Yeh, Chih-Sheng Chang
  • Publication number: 20090256207
    Abstract: Disclosed herein is a transistor comprising a first fin having a first gate electrode disposed across the first fin; the gate electrode contacting opposing surfaces of the fin; and a planar oxide layer having a second gate electrode disposed across the planar oxide layer to form a planar metal oxide semiconductor field effect transistor; the first fin and the planar oxide layer being disposed upon a surface of a wafer.
    Type: Application
    Filed: April 14, 2008
    Publication date: October 15, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Xiaomeng Chen, Bachir Dirahoui, William K. Henson, Michael D. Hulvey, Amit Kumar, Mahender Kumar, Amanda L. Tessier, Clement H. Wann
  • Patent number: 7494915
    Abstract: An interconnect structure in the back end of the line of an integrated circuit forms contacts between successive layers by removing material in the top surface of the lower interconnect in a cone-shaped aperture, the removal process extending through the liner of the upper aperture, and depositing a second liner extending down into the cone-shaped aperture, thereby increasing the mechanical strength of the contact, which then enhance the overall reliability of the integrated circuit.
    Type: Grant
    Filed: August 9, 2006
    Date of Patent: February 24, 2009
    Assignees: International Business Machines Corporation, Infineon Technologies, AG
    Inventors: Lawrence A. Clevenger, Andrew P. Cowley, Timothy J. Dalton, Mark Hoinkis, Steffen K. Kaldor, Erdem Kaltalioglu, Kaushik A. Kumar, Douglas C. La Tulipe, Jr., Jochen Schacht, Andrew H. Simon, Terry A. Spooner, Yun-Yu Wang, Clement H. Wann, Chih-Chao Yang
  • Publication number: 20080239792
    Abstract: A local interconnect is formed with a gate conductor line that has an exposed sidewall on an active area of a semiconductor substrate. The exposes sidewall comprises a silicon containing material that may form a silicide alloy upon silicidation. During a silicidation process, a gate conductor sidewall silicide alloy forms on the exposed sidewall of the gate conductor line and an active area silicide is formed on the active area. The two silicides are joined to provide an electrical connection between the active area and the gate conductor line. Multiple sidewalls may be exposed on the gate conductor line to make multiple connections to different active area silicides.
    Type: Application
    Filed: March 29, 2007
    Publication date: October 2, 2008
    Applicant: International Business Machines Corporation
    Inventors: Clement H. Wann, Haining S. Yang
  • Publication number: 20080220581
    Abstract: An opto-thermal annealing method for forming a field effect transistor uses a reflective metal gate so that electrical properties of the metal gate and also interface between the metal gate and a gate dielectric are not compromised when opto-thermal annealing a source/drain region adjacent the metal gate. Another opto-thermal annealing method may be used for simultaneously opto-thermally annealing: (1) a silicon layer and a silicide forming metal layer to form a fully silicided gate; and (2) a source/drain region to form an annealed source/drain region. An additional opto-thermal annealing method may use a thermal insulator layer in conjunction with a thermal absorber layer to selectively opto-thermally anneal a silicon layer and a silicide forming metal layer to form a fully silicide gate.
    Type: Application
    Filed: May 14, 2008
    Publication date: September 11, 2008
    Applicant: International Business Machines Corporation
    Inventors: Scott D. Allen, Cyril Cabral, Kevin K. Dezfulian, Sunfei Fang, Brian J. Greene, Rajarao Jammy, Christian Lavoie, Zhijiong Luo, Hung Ng, Chun-Yung Sung, Clement H. Wann, Huilong Zhu
  • Patent number: 7410852
    Abstract: An opto-thermal annealing method for forming a field effect transistor uses a reflective metal gate so that electrical properties of the metal gate and also interface between the metal gate and a gate dielectric are not compromised when opto-thermal annealing a source/drain region adjacent the metal gate. Another opto-thermal annealing method may be used for simultaneously opto-thermally annealing: (1) a silicon layer and a silicide forming metal layer to form a fully silicided gate; and (2) a source/drain region to form an annealed source/drain region. An additional opto-thermal annealing method may use a thermal insulator layer in conjunction with a thermal absorber layer to selectively opto-thermally anneal a silicon layer and a silicide forming metal layer to form a fully silicide gate.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: August 12, 2008
    Assignee: International Business Machines Corporation
    Inventors: Scott D. Allen, Cyril Cabral, Jr., Kevin K. Dezfulian, Sunfei Fang, Brian J. Greene, Rajarao Jammy, Christian Lavoie, Zhijiong Luo, Hung Ng, Chun-Yung Sung, Clement H. Wann, Huilong Zhu
  • Patent number: 7282435
    Abstract: A method is provided of forming a contact to a semiconductor structure. A current-conducting member is formed which extends horizontally over a first portion of a semiconductor device region but not over a second portion of such semiconductor device region. A first film is formed which extends over the second portion and only partially over the member to expose a contact portion of the member. A first contact via is formed in conductive communication with the contact portion. The first contact via has a silicide-containing region self-aligned to an area of the member contacted by the contact via. A second contact via is formed in conductive communication with the second portion, the second contact via extending through the first film.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: October 16, 2007
    Assignee: International Business Machines Corporation
    Inventors: Haining S. Yang, Clement H. Wann, Huilong Zhu
  • Patent number: 7271455
    Abstract: An advanced gate structure that includes a fully silicided metal gate and silicided source and drain regions in which the fully silicided metal gate has a thickness that is greater than the thickness of the silicided source/drain regions is provided. A method of forming the advanced gate structure is also provided in which the silicided source and drain regions are formed prior to formation of the silicided metal gate region.
    Type: Grant
    Filed: July 14, 2004
    Date of Patent: September 18, 2007
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Chester T. Dziobkowski, Sunfei Fang, Evgeni Gousev, Rajarao Jammy, Vijay Narayanan, Vamsi Paruchuri, Ghavam G. Shahidi, Michelle L. Steen, Clement H. Wann
  • Patent number: 7122462
    Abstract: An interconnect structure in the back end of the line of an integrated circuit forms contacts between successive layers by removing material in the top surface of the lower interconnect in a cone-shaped aperture, the removal process extending through the liner of the upper aperture, and depositing a second liner extending down into the cone-shaped aperture, thereby increasing the mechanical strength of the contact, which then enhance the overall reliability of the integrated circuit.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: October 17, 2006
    Assignees: International Business Machines Corporation, Infineon Technologies, AG
    Inventors: Lawrence A. Clevenger, Andrew P. Cowley, Timothy J. Dalton, Mark Hoinkis, Steffen K. Kaldor, Erdem Kaltalioglu, Kaushik A. Kumar, Douglas C. La Tulipe, Jr., Jochen Schacht, Andrew H. Simon, Terry A. Spooner, Yun-Yu Wang, Clement H. Wann, Chih-Chao Yang
  • Patent number: 7122472
    Abstract: A method of forming a dual self-aligned fully silicided gate in a CMOS device requiring only one lithography level, wherein the method comprises forming a first type semiconductor device having a first well region in a semiconductor substrate, first source/drain silicide areas in the first well region, and a first type gate isolated from the first source/drain silicide areas; forming a second type semiconductor device having a second well region in the semiconductor substrate, second source/drain silicide areas in the second well region, and a second type gate isolated from the second source/drain silicide areas; selectively forming a first metal layer over the second type semiconductor device; performing a first fully silicided (FUSI) gate formation on only the second type gate; depositing a second metal layer over the first and second type semiconductor devices; and performing a second FUSI gate formation on only the first type gate.
    Type: Grant
    Filed: December 2, 2004
    Date of Patent: October 17, 2006
    Assignee: International Business Machines Corporation
    Inventors: Sunfei Fang, Cyril Cabral, Jr., Chester T. Dziobkowski, Christian Lavoie, Clement H. Wann
  • Patent number: 7112481
    Abstract: A method of fabricating a complementary metal oxide semiconductor (CMOS) device, wherein the method comprises forming a first well region in a semiconductor substrate for accommodation of a first type semiconductor device; forming a second well region in the semiconductor substrate for accommodation of a second type semiconductor device; shielding the first type semiconductor device with a mask; depositing a first metal layer over the second type semiconductor device; performing a first salicide formation on the second type semiconductor device; removing the mask; depositing a second metal layer over the first and second type semiconductor devices; and performing a second salicide formation on the first type semiconductor device. The method requires only one pattern level and it eliminates pattern overlay as it also simplifies the processes to form different silicide material over different devices.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: September 26, 2006
    Assignee: International Business Machines Corporation
    Inventors: Sunfei Fang, Cyril Cabral, Jr., Chester T. Dziobkowski, John J. Ellis-Monaghan, Christian Lavoie, Zhijiong Luo, James S. Nakos, An L. Steegen, Clement H. Wann
  • Patent number: 7098536
    Abstract: A structure is provided which includes a semiconductor device region including a first portion and a second portion. A current-conducting member is provided, which extends horizontally over the first portion but not over the second portion. A first film, such as a stress-imparting film, extends over the second portion and only partially over the current-conducting member to expose a contact portion of the member. A first contact via is provided in conductive communication with the contact portion of the member, the first contact via having a self-aligned silicide-containing region. A second contact via is provided in conductive communication with the second portion of the semiconductor device region, the second contact via extending through the first film.
    Type: Grant
    Filed: October 21, 2004
    Date of Patent: August 29, 2006
    Assignee: International Business Machines Corporation
    Inventors: Haining S. Yang, Clement H. Wann, Huilong Zhu
  • Patent number: 7067368
    Abstract: A method of fabricating a complementary metal oxide semiconductor (CMOS) device, wherein the method comprises forming a first well region in a semiconductor substrate for accommodation of a first type semiconductor device; forming a second well region in the semiconductor substrate for accommodation of a second type semiconductor device; shielding the first type semiconductor device with a mask; depositing a first metal layer over the second type semiconductor device; performing a first salicide formation on the second type semiconductor device; removing the mask; depositing a second metal layer over the first and second type semiconductor devices; and performing a second salicide formation on the first type semiconductor device. The method requires only one pattern level and it eliminates pattern overlay as it also simplifies the processes to form different silicide material over different devices.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: June 27, 2006
    Assignee: International Business Machines Corporation
    Inventors: Sunfei Fang, Cyril Cabral, Jr., Chester T. Dziobkowski, John J. Ellis-Monaghan, Christian Lavoie, Zhijiong Luo, James S. Nakos, An L. Steegen, Clement H. Wann
  • Patent number: 7064025
    Abstract: A method of fabricating a complementary metal oxide semiconductor (CMOS) device, wherein the method comprises forming a first well region in a semiconductor substrate for accommodation of a first type semiconductor device; forming a second well region in the semiconductor substrate for accommodation of a second type semiconductor device; shielding the first type semiconductor device with a mask; depositing a first metal layer over the second type semiconductor device; performing a first salicide formation on the second type semiconductor device; removing the mask; depositing a second metal layer over the first and second type semiconductor devices; and performing a second salicide formation on the first type semiconductor device. The method requires only one pattern level and it eliminates pattern overlay as it also simplifies the processes to form different silicide material over different devices.
    Type: Grant
    Filed: December 2, 2004
    Date of Patent: June 20, 2006
    Assignee: International Business Machines Corporation
    Inventors: Sunfei Fang, Cyril Cabral, Jr., Chester T. Dziobkowski, John J. Ellis-Monaghan, Christian Lavoie, Zhijiong Luo, James S. Nakos, An L. Steegen, Clement H. Wann