Patents by Inventor Clifford Anderson

Clifford Anderson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11923568
    Abstract: A fuel electrode incorporates a first and second corrugated portion that are attached to each other at offset angles respect to their corrugation axis and therefore reinforce each other. A first corrugated portion may extend orthogonally with respect to a second corrugated portion. The first and second corrugated portions may be formed from metal wire and may therefore have a very high volumetric void fraction and a high surface area to volume ratio (sa/vol). In addition, the strands of the wire may be selected to enable high conductivity to the current collectors while maximizing the sa/vol. In addition, the shape of the corrugation, including the period distance, amplitude and geometry may be selected with respect to the stiffness requirements and electrochemical cell application factors. The first and second corrugated portions may be calendared or crushed to reduce thickness of the fuel electrode.
    Type: Grant
    Filed: May 13, 2022
    Date of Patent: March 5, 2024
    Assignee: FORM ENERGY, INC.
    Inventors: Joel Ryan Hayes, Ramkumar Krishnan, Todd Trimble, Clifford Anderson
  • Publication number: 20220344677
    Abstract: A fuel electrode incorporates a first and second corrugated portion that are attached to each other at offset angles respect to their corrugation axis and therefore reinforce each other. A first corrugated portion may extend orthogonally with respect to a second corrugated portion. The first and second corrugated portions may be formed from metal wire and may therefore have a very high volumetric void fraction and a high surface area to volume ratio (sa/vol). In addition, the strands of the wire may be selected to enable high conductivity to the current collectors while maximizing the sa/vol. In addition, the shape of the corrugation, including the period distance, amplitude and geometry may be selected with respect to the stiffness requirements and electrochemical cell application factors. The first and second corrugated portions may be calendared or crushed to reduce thickness of the fuel electrode.
    Type: Application
    Filed: May 13, 2022
    Publication date: October 27, 2022
    Inventors: Joel Ryan HAYES, Ramkumar KRISHNAN, Todd TRIMBLE, Clifford ANDERSON
  • Patent number: 11369966
    Abstract: A multi-layer sealing structure for sealing a microwell array defined in or on a substrate includes at least one front compliant layer, a back compliant layer, and a flexural layer arranged between the at least one front compliant layer and the back compliant layer, wherein the at least one front compliant layer is closer than the back compliant layer to microwells of the microwell array. One or more front compliant layers may be optically reflective and/or may embody a sensor layer. The back compliant layer may include an adhesive or various types of rubber, and the flexural layer may include a polymeric material or metal. A multi-layer sealing structure may be separated from a microwell array by peeling. A multi-layer sealing structure allows local disruption of sealing where particle contaminants are present without compromising the sealing performance of an entire microwell array, and without requiring a large sealing force.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: June 28, 2022
    Assignee: Arizona Board of Regents on Behalf of Arizona State University
    Inventors: Clifford Anderson, Kristen Lee, Jacob Messner, Laimonas Kelbauskas, Benjamin Ueberroth, Yanqing Tian, Deirdre Meldrum
  • Patent number: 11335918
    Abstract: A fuel electrode incorporates a first and second corrugated portion that are attached to each other at offset angles respect to their corrugation axis and therefore reinforce each other. A first corrugated portion may extend orthogonally with respect to a second corrugated portion. The first and second corrugated portions may be formed from metal wire and may therefore have a very high volumetric void fraction and a high surface area to volume ratio (sa/vol). In addition, the strands of the wire may be selected to enable high conductivity to the current collectors while maximizing the sa/vol. In addition, the shape of the corrugation, including the period distance, amplitude and geometry may be selected with respect to the stiffness requirements and electrochemical cell application factors. The first and second corrugated portions may be calendared or crushed to reduce thickness of the fuel electrode.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: May 17, 2022
    Assignee: FORM ENERGY, INC.
    Inventors: Joel Ryan Hayes, Ramkumar Krishnan, Todd Trimble, Clifford Anderson
  • Publication number: 20220091100
    Abstract: A method for analyzing cells through measurement of live-cell parameters followed by measurement of gene and protein expression is disclosed herein. The method comprises measuring one or more live-cell parameters for a plurality of cells contained in at least one liquid in a plurality of isolated microchambers of a microarray device. The method further comprises removing a lid bounding the plurality of isolated microchambers. The method further comprises microdispensing a quantity of lysate into each microchamber of the plurality of isolated microchambers. The method further comprises microdispensing a quantity of reverse transcription polymerase chain reaction mix into each microchamber of the plurality of isolated microchambers. The method further comprises microdispensing a quantity of oil into each microchamber of the plurality of isolated microchambers.
    Type: Application
    Filed: November 30, 2021
    Publication date: March 24, 2022
    Inventors: Clifford Anderson, Dmitry Derkach, Deirdre Meldrum, Laimonas Kelbauskas
  • Patent number: 11136614
    Abstract: Methods for seeding live cells onto spatially defined regions of a substrate including multiple features (e.g., microwells or other microenvironments) utilize a stencil embodied in a hole-defining sacrificial film. A sacrificial film devoid of holes may be applied over features of a substrate, and a hole generating mechanism (e.g., hot needle or laser) aligned with features may be used to define holes in the film. Alternatively, holes may be predefined in a sacrificial film to form a stencil, and the stencil may be assembled to the substrate with the holes registered with features thereof. Thereafter, cells are seeded through holes in the film. Seeded cells are subject to incubation, further processing, and/or performance of one or more assays, and the hole-defining sacrificial film (stencil) may be removed.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: October 5, 2021
    Assignee: Arizona Board of Regents on Behalf of Arizona State University
    Inventors: Jacob Messner, Clifford Anderson, Honor Glenn, Kristen Lee, Mark Richards, Laimonas Kelbauskas, Kimberly Bussey, Deirdre Meldrum
  • Patent number: 11045807
    Abstract: An integrated technological platform enabling real-time quantitative multiparameter metabolic profiling, utilizing either or both of extra and intracellular optical sensors, individually or simultaneously. A scalable embedded micropocket array structure, generally fabricated on fused silica substrates, facilitates the integration of multiple, spatially separated extracellular sensors for multiparameter analysis in a container formed with the use of an activation mechanism forming part of a device configured to hold the container during the measurements. The creation of hermetically sealed microchambers is carried out with a pneumatically and/or mechanically and/or electromechanically driven device that is “floating” within the holding device and that is optionally equipped with a vacuum/suction mechanism to hold a component of the container at its surface.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: June 29, 2021
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Deirdre Meldrum, Laimonas Kelbauskas, Yanqing Tian, Honor Glenn, Clifford Anderson, Kristen Lee, Ganquan Song, Liqiang Zhang, Jeff Houkal, Fengyu Su, Benjamin Ueberroth, Jacob Messner, Hong Wang, Kimberly Bussey
  • Patent number: 10940476
    Abstract: A device for high-throughput multi-parameter functional profiling of the same cells in multicellular settings and in isolation is provided. In certain aspects, an integrated microfluidic device for multi-parameter metabolic and other phenotypic profiling of live biological cells is useable with: 1) multicellular clusters or small biopsy tissue samples, 2) cultures of the constituent cells obtained after cluster/tissue dissociation, and 3) the same constituent single cells in isolation. The approach enables study of the effects of multicellular complexity, such as in response to treatment, pathogens, stress, or other factors concerning disease origination and progression. Measurements may be performed on single cells or multicellular populations or tissues in the same assay at the same time.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: March 9, 2021
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Laimonas Kelbauskas, Honor Glenn, Jeff Houkal, Clifford Anderson, Yanqing Tian, Fengyu Su, Deirdre Meldrum
  • Publication number: 20200406253
    Abstract: An integrated technological platform enabling real-time quantitative multiparameter metabolic profiling, utilizing either or both of extra and intracellular optical sensors, individually or simultaneously. A scalable embedded micropocket array structure, generally fabricated on fused silica substrates, facilitates the integration of multiple, spatially separated extracellular sensors for multiparameter analysis in a container formed with the use of an activation mechanism forming part of a device configured to hold the container during the measurements. The creation of hermetically sealed microchambers is carried out with a pneumatically and/or mechanically and/or electromechanically driven device that is “floating” within the holding device and that is optionally equipped with a vacuum/suction mechanism to hold a component of the container at its surface.
    Type: Application
    Filed: February 26, 2018
    Publication date: December 31, 2020
    Inventors: Deirdre MELDRUM, Laimonas KELBAUSKAS, Yanqing TIAN, Honor GLENN, Clifford ANDERSON, Kristen LEE, Ganquan SONG, Liqiang ZHANG, Jeff HOUKAL, Fengyu SU, Benjamin UEBERROTH, Jacob MESSNER, Hong WANG, Kimberly BUSSEY
  • Publication number: 20200049694
    Abstract: A method for analyzing cells through measurement of live-cell parameters followed by measurement of gene and protein expression is disclosed herein. The method comprises measuring one or more live-cell parameters for a plurality of cells contained in at least one liquid in a plurality of isolated microchambers of a microarray device. The method further comprises removing a lid bounding the plurality of isolated microchambers. The method further comprises microdispensing a quantity of lysate into each microchamber of the plurality of isolated microchambers. The method further comprises microdispensing a quantity of reverse transcription polymerase chain reaction mix into each microchamber of the plurality of isolated microchambers. The method further comprises microdispensing a quantity of oil into each microchamber of the plurality of isolated microchambers.
    Type: Application
    Filed: November 16, 2016
    Publication date: February 13, 2020
    Inventors: Clifford Anderson, Dmitry Derkach, Deirdre Meldrum, Laimonas Kelbauskas
  • Publication number: 20190319278
    Abstract: A fuel electrode incorporates a first and second corrugated portion that are attached to each other at offset angles respect to their corrugation axis and therefore reinforce each other. A first corrugated portion may extend orthogonally with respect to a second corrugated portion. The first and second corrugated portions may be formed from metal wire and may therefore have a very high volumetric void fraction and a high surface area to volume ratio (sa/vol). In addition, the strands of the wire may be selected to enable high conductivity to the current collectors while maximizing the sa/vol. In addition, the shape of the corrugation, including the period distance, amplitude and geometry may be selected with respect to the stiffness requirements and electrochemical cell application factors. The first and second corrugated portions may be calendared or crushed to reduce thickness of the fuel electrode.
    Type: Application
    Filed: October 20, 2017
    Publication date: October 17, 2019
    Inventors: Joel Ryan HAYES, Ramkumar KRISHNAN, Todd TRIMBLE, Clifford ANDERSON
  • Publication number: 20190126275
    Abstract: A device for high-throughput multi-parameter functional profiling of the same cells in multicellular settings and in isolation is provided. In certain aspects, an integrated microfluidic device for multi-parameter metabolic and other phenotypic profiling of live biological cells is useable with: 1) multicellular clusters or small biopsy tissue samples, 2) cultures of the constituent cells obtained after cluster/tissue dissociation, and 3) the same constituent single cells in isolation. The approach enables study of the effects of multicellular complexity, such as in response to treatment, pathogens, stress, or other factors concerning disease origination and progression. Measurements may be performed on single cells or multicellular populations or tissues in the same assay at the same time.
    Type: Application
    Filed: April 21, 2017
    Publication date: May 2, 2019
    Inventors: Laimonas Kelbauskas, Honor Glenn, Jeff Houkal, Clifford Anderson, Yanqing Tian, Fengyu Su, Deirdre Meldrum
  • Publication number: 20180334700
    Abstract: Methods for seeding live cells onto spatially defined regions of a substrate including multiple features (e.g., microwells or other microenvironments) utilize a stencil embodied in a hole-defining sacrificial film. A sacrificial film devoid of holes may be applied over features of a substrate, and a hole generating mechanism (e.g., hot needle or laser) aligned with features may be used to define holes in the film. Alternatively, holes may be predefined in a sacrificial film to form a stencil, and the stencil may be assembled to the substrate with the holes registered with features thereof. Thereafter, cells are seeded through holes in the film. Seeded cells are subject to incubation, further processing, and/or performance of one or more assays, and the hole-defining sacrificial film (stencil) may be removed.
    Type: Application
    Filed: October 7, 2016
    Publication date: November 22, 2018
    Inventors: Jacob Messner, Clifford Anderson, Honor Glenn, Kristen Lee, Mark Richards, Laimonas Kelbauskas, Kimberly Bussey, Deirdre Meldrum
  • Publication number: 20180264468
    Abstract: A multi-layer sealing structure for sealing a microwell array defined in or on a substrate includes at least one front compliant layer, a back compliant layer, and a flexural layer arranged between the at least one front compliant layer and the back compliant layer, wherein the at least one front compliant layer is closer than the back compliant layer to microwells of the microwell array. One or more front compliant layers may be optically reflective and/or may embody a sensor layer. The back compliant layer may include an adhesive or various types of rubber, and the flexural layer may include a polymeric material or metal. A multi-layer sealing structure may be separated from a microwell array by peeling. A multi-layer sealing structure allows local disruption of sealing where particle contaminants are present without compromising the sealing performance of an entire microwell array, and without requiring a large sealing force.
    Type: Application
    Filed: September 16, 2016
    Publication date: September 20, 2018
    Inventors: Clifford Anderson, Kristen Lee, Jacob Messner, Laimonas Kelbauskas, Benjamin Ueberroth, Yanqing Tian, Deirdre Meldrum
  • Patent number: 7268970
    Abstract: Electromagnetic tape head position is adjusted according to vibration indicative information received from vibration sensor secured to tape transport mechanism that supports the tape head.
    Type: Grant
    Filed: November 20, 2003
    Date of Patent: September 11, 2007
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: James Clifford Anderson, Martin John Harper, Vernon L. Knowles, Donald J. Fasen
  • Publication number: 20060210451
    Abstract: A holder (10) housing defines a plurality of individual wells (14) sized to retain a substrate such as a bio-chip (20) or microscope slide in a vertical orientation, and to retain a volume of liquid (22) sufficient to immerse the bio-chip. The wells are spaced-apart with an approximately 9 mm pitch and the holder has a form factor approximating an SBS Standard 96 well microplate. The holder configuration is such that it can be manipulated with standard robotic equipment (30), and can be fabricated using injection molding processes.
    Type: Application
    Filed: August 16, 2002
    Publication date: September 21, 2006
    Inventors: Clifford Anderson, Richard Maldonado, Richard Belval
  • Patent number: D636395
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: April 19, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Lester Clifford Anderson, John Lynn Harting, Stuart Allan Karten, Christopher LaBrutto, Andy Jason Logan, Glen Arthur Noda, Dennis Lynn Schroeder
  • Patent number: D638423
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: May 24, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Lester Clifford Anderson, John Lynn Harting, Stuart Allan Karten, Christopher LaBrutto, Andy Jason Logan, Glen Arthur Noda, Dennis Lynn Schroeder
  • Patent number: D639297
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: June 7, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Lester Clifford Anderson, John Lynn Harting, Stuart Allan Karten, Christopher LaBrutto, Andy Jason Logan, Glen Arthur Noda, Dennis Lynn Schroeder
  • Patent number: D639301
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: June 7, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Lester Clifford Anderson, John Lynn Harting, Stuart Allan Karten, Christopher LaBrutto, Andy Jason Logan, Glen Arthur Noda, Dennis Lynn Schroeder